Getting High on Grass – Can Plants Really Fuel a Plane?

In the wake of recent studies showing how dangerously close to the brink we are when it comes to climate change, it is more important now than ever to seriously consider every possible alternative to environmentally damaging fossil fuels. One such alternative comes in the form of biofuels.

Humans have been using biofuels for as long as we’ve been using wood to fuel our fires. In the last hundred or so years, however, we’ve begun to understand how plant matter can be converted into liquid fuels that could soon power a plane.

In this piece, I’ll be looking at where biofuels are now and where they need to be if we are to significantly reduce CO2 emissions. I’ll be concentrating my efforts on recent attempts by the scientific community to make grass a viable fuel for transportation.

Grass is the most abundant plant on the planet. In my home country of Ireland, more than two thirds of all land is covered in naturally growing grass. If we could refine and perfect the process of turning grasses into fuel (grassoline), this would be a real contribution towards slowing the march of climate change.

The problem right now is that it is expensive and inefficient. Many scientists in the field, however, think that given time and money, we could tap into this huge source of unharnessed power and save the planet in the process.

The reason grass in particular is being considered as a biofuel is not because it is necessarily the most efficient plant to use, but rather because of its abundance and willingness to grow in fields that are inhospitable to food crops, known as marginal lands.

Another reason that grass is attractive as a biofuel is that it is not really needed for anything else. Other candidates for biofuels (like wood, sugarcane and soybeans) have the disadvantage of being useful for things like furniture, rum and tofu.

But why aviation fuel? While cars are slowly turning electric, it is unlikely that planes will follow suit any time soon. The other more pressing reason is that travelling by plane is far worse for the environment than any other mode of transport.

This is down to two factors; first, planes are less efficient than other modes of transport in terms of emissions per passenger mile. Second, they allow us to travel a far greater number of miles than we would otherwise be able to.

The idea that we could use grass, algae and other plants to produce aviation fuel is not nearly as crazy as it sounds. The fossil fuels which we currently use are themselves made of organic matter that has, over a very long time, undergone a natural process called pyrolysis. Human beings have been using the process of pyrolysis for our own gain for thousands of years in the form of charcoal burning.

Pyrolysis involves separating materials into their constituent molecules in the absence of oxygen. This means, very roughly, heating up the material to a specified temperature, covering it, and allowing it to separate into liquid, solid and gas. These products can then be refined into fuels.

Recently, it has been found that microwave heating produces a higher pyrolysis yield than traditional methods since it can be done entirely in the absence of oxygen and at a very precise temperature. Another benefit is that the characteristic ‘hot spots’ of microwave heating aid in pyrolysis.

You might be thinking that grass is an important source of food for livestock. The beauty of using grass as a biofuel is that this resource would not be lost. The solid by-product of grass pyrolysis can still be fed to livestock. What’s more, by removing the liquid constituents, the feed can be preserved much longer than fresh grass cuttings.

In the UK, biofuels already account for nearly 3% of all road and non-road mobile machinery fuel, but with the predicted change in efficiency given a few years, biofuels could eventually account for a lot more than that.

Right now, scientists can only produce a few drops of biofuel from grass in the laboratory. Tests carried out at Ghent University in Belgium show, however, that there is a potentially very efficient energy source in grass if we can learn to harness it correctly.

In April 2017, the researchers at Ghent University found that a certain type of bacteria (clostridium) can be used to metabolize certain grasses into decane, a key ingredient in both petrol and aviation fuel. While this breakthrough cannot yet be used effectively, it is key knowledge that will inform research into better biofuel technologies.

Hang on, you might say, if refining plant matter gives us the same fuel as we are already using, then why is it better for the environment? Surely biofuels release the same amount of CO2 as fossil fuels? This is indeed true.

The difference is that the CO2 in living plants has only recently been absorbed from the air by the plant and is simply being released again. It is part of the normal CO2 cycle. With fossil fuels, the CO2 has been absent from the environment for a very long time, trapped underground. By burning it, we are releasing extra CO2 rather than what was already there.

A major obstacle to biofuel efficiency growth is that governments and companies are not willing to invest heavily in something that may not yield solid results for years to come. This is simply short-sightedness. The science will continue to improve. Lack of investment only slows down the process. The people who invest heavily now will surely see a huge return in a matter of years.

The investment situation poses a classic catch-22. Companies are not investing heavily in biofuels because it will take so long for the investment to pay off. The thing is, if companies were to invest more heavily in biofuels, the technologies would improve faster and investors would see a quicker return.

Another well-known obstacle in the way of all renewable energies is the huge sums of money tied up in the fossil fuel industry. The industry is worth about 7 trillion USD globally. No wonder, then, that lobby groups are able so easily to sway policy-makers.

Regardless of what figures in the US like Rex Tillerson, Sean Hannity, or indeed their president, may say, climate change is a very real and very serious danger. Biofuels are just one example of the many ways in which we can combat this danger, but they are one which will continue to grow in importance for years to come.

As the renewable energy sector grows and the fossil fuel sector declines, we should see an increase in biofuel investment and an acceleration of biofuel technology development. We can only hope that fossil fuel companies lose their chokehold on governments and investors before it is too late for the planet.

Some Further Reading and Research Sources

The Fight to Ban Neonics

Back in February, the European Food Safety Authority (EFSA) released an updated report on the harmful effects of certain pesticides on a variety of bees. Confirming conclusions made in their 2013 report, the EFSA found a wealth of evidence supporting the claim that the world’s most popular pesticide group, neonicotinoids (or neonics for short) are harmful to both honeybees and bumblebees.

In April, following the EFSA’s findings, the EU put into place a complete ban on the use of neonics outdoors, expanding on the partial ban imposed in 2013 which prevented neonic use on certain crops.

The move, which should see all European neonic use confined to greenhouses by the end of the year, was welcomed with open arms by environmental groups like Friends of the Earth and the Task Force on Systemic Pesticides. This fight, however, is far from over.

Neonics are a relatively new kind of pesticide. The use of these ‘systemic’ pesticides only dates back about 20 years. According to the UK Pesticide Action Network, “Unlike contact pesticides, which remain on the surface of the treated foliage, systemics are taken up by the plant and transported to all the tissues”. This includes the pollen and nectar which bees collect to feed their colonies.

Systemic pesticides have also been found to persist in soil, water, dust and even air long after the chemicals have been sprayed. An open letter written in April and signed by 242 esteemed scientists claimed that “the balance of evidence strongly suggests that these chemicals are harming beneficial insects and contributing to the current massive loss of global biodiversity”.

The use of toxic systemic pesticides, which has steadily grown in recent years, is not just problematic for bees. The WIA (Worldwide Integrated Assessment of the Impact of Systemic Pesticides on Biodiversity and Ecosystems in case you’re wondering) included a report on the impact of these pesticides on vertebrate populations.

The report reviewed 150 studies and concluded that neonics were both directly and indirectly affecting terrestrial and aquatic vertebrate populations. Some birds, for example, are directly affected by ingesting seeds coated in toxic neonics.  Fish, too, have been found to be vulnerable.

While the report found that the amount of chemicals in the air were non-toxic to vertebrates at present, neonics are causing sub-lethal effects like stunting growth and reproductive success. Global populations of insect-eating birds, for example, are faced with a marked decrease in the amount of prey available to them. This is an example of an indirect harm caused by neonics.

This food chain effect is incredibly important to consider. Bees are the ecological backbone of a vast number of ecosystems. The knock-on effects from the decline in bee populations will increase in scope and scale until a worldwide ban on neonics and other systemic pesticides is firmly in place.

This goal, however, is far from being achieved.  A 2017 report published in Science found toxic neonics in 75% of the world’s honey. Another study conducted the same year in Germany found that three quarters of flying insects have disappeared in the last 20 years, a period which coincides quite neatly with the introduction of neonics.

Multinational companies like Bayer and Syngenta which manufacture neonics like imidacloprid and clothianidin, will fight tooth and nail to prevent ecologically responsible policy from passing into law around the world.

Back in 2013, when the partial ban was proposed, Syngenta went as far as to threaten legal action against individual members of the EFSA, whose job it was to carry out an unbiased scientific evaluation of Syngenta’s products. For these business giants, profit margins are, as usual, more important than preservation of the biodiversity of life on earth. We must be ready for their inevitable appeals.

The EU and others, like Canada, are setting the example for other governing bodies to follow. If this problem is not addressed soon, however, we will leave future generations with a planet far less diverse and bursting with life than the one we had when neonics were first concocted.

Neonics aside, humans are already the cause of the most recent of earth’s six mass extinctions. It says something about a species when they can take their place on a brief list which includes both asteroid impacts and cataclysmic eruptions.

At this point, we are in full damage control mode. Conservationists are fighting not only against pharmaceutical giants which wield more power than it should be possible to wield, but also against the clock. The public, however, have proved that this is one issue with which they can affect real change.

Alongside the EFSA’s report, a driving catalyst for the EU’s ban on neonics was a petition started on the campaign platform ‘Avaaz’. The petition has received a staggering 5 million signatures. It is clear that people around the world care much more about preserving the biodiversity of this planet than they do about Bayer’s profits.

The Avaaz petition is a reminder that there are more of us than there are of them and that we can in fact stand up to them. We all know that rich bullies want to destroy this planet to fill their pockets, but we must not let them get away with it.

I urge you, if you see a petition or a fundraising event for this issue, to become as involved as you possibly can. This issue is, if you’ll pardon my language, extremely fucking important.

Header image credit – Farm Futures

A Pulsing Sea – The Effects of Seismic Airguns on Whale Populations

Whales are notoriously vocal animals. Indeed, the catalyst for the ‘Save the Whales’ campaign of the 1970s can be said to be the release of the album ‘Songs of the Humpback Whale’ recorded by bio-acoustician Roger Payne. This was the first time that the public was able to hear and appreciate the astonishing variety and beauty of the Humpback’s songs. This love affair with the whales came in the nick of time, since the humpback population had at that time fallen to a historic low. It is estimated that by the late 1960s, over 90% of humpbacks had been wiped out by human activity.

Since the early 1920s, a technique known as ‘reflection seismology’ has been used to locate reserves of natural resources such as oil, gas and salt. Reflection seismology operates on much the same principle as sonar. Sound waves are emitted which reflect off the sea floor and are then measured by an array of sensors. Using this technique, areas of the sea floor can be accurately mapped, and it is possible to determine whether natural resources lie beneath the rock. Modern reflection seismology is carried out using huge arrays of seismic ‘airguns’. These airguns can produce sounds of up to 240 decibels, over twice the volume of a standard rock gig. What’s worse, this noise level is produced every 10 seconds, 24 hours a day.

Whales and dolphins use sound to communicate with each other and, in some cases, for the echolocation of prey. Although insufficient research has been conducted to ascertain the detrimental effects of seismic testing on whales, preliminary data shows that almost all cetaceans give seismic airguns a wide berth. Further, sightings of cetaceans fall significantly when seismic testing is being conducted in a given area.  Even in the absence of solid data, mere common sense dictates that the levels of noise produced by seismic testing may well prove to seriously harm the hearing of cetaceans, as well as disrupting their feeding, mating and migratory habits.

It is not just whales that are at risk. During periods of seismic testing, local fishermen have reported an increase in dead fish floating in the sea. Squid, crabs and fish eggs have also been shown to be harmed by seismic airguns. It seems, then, that as well as deafening and disorienting endangered whales, seismic testing may also be harming their ecosystem and thus limiting the availability of their prey. This kind of test may have a knock-on effect which could decimate entire marine ecosystems.

On the 1st of February 2018, seismic airgun testing off the coast of Newcastle, Australia was approved by NOPSEMA. The tests, which will be carried out by Asset energy, are approved right up until the 31st of May, with the whale migration set to begin around the 1st of June. This has been met with serious resistance. Greenpeace Australia campaigner Nathaniel Pelle noted that “Whales and other endangered species do not adhere to the Gregorian calendar and do not know the difference between May 31 and June 1”. The fact that this must be noted at all speaks to the greed and short-sightedness of regulators and fossil fuel companies.

A final and crucial point to consider is that even if seismic tests did not damage marine populations directly (which they certainly do), they are a gateway to offshore drilling, a practice which damages marine populations in a number of ways. First, there is a possibility of oil spills which, as we all know, can be cataclysmic events for marine ecosystems. Further, when the oil is successfully extracted, it will be burned as fuel, releasing carbon dioxide into the atmosphere and accelerating the effects of climate change. Renewable energy sources such as wind turbines and hydroelectric dams are the planet’s last hope for any sort of meaningful recovery. One may consider it an added bonus, then, that these energy sources do not require that we seriously harm marine species while they attempt to recover from the immeasurable damage that humans have already inflicted upon them.

Sources

Beachapedia – Seismic Surveys

Bielby, Nick – NOPSEMA accepts environmental plan for seismic testing off Newcastle coast and Concern over plan for seismic test off the coast of Newcastle

Gordon, Jonathan C.D et al. – A Review of the Effects of Seismic Survey on Marine Mammals

Greenpeace Australia – Humpback whale migration threatened by seismic blasts

Hannam, Peter – ‘Whales don’t follow the Gregorian calendar’, opponents of seismic testing say

Stone, Carolyn J. and Tasker, Mark L. –  The effects of seismic airguns on cetaceans in UK waters

Photo Credit: Maui Magic