ExxonMobil vs The State: How Governments Can Lower Corporate CO2 Emissions

First published in UCD College Tribune

A report released in 2017 found that over half of all global emissions since 1988 have been produced by just 25 companies. When you take into account the 100 most environmentally damaging companies, known as the ‘Carbon Majors’, that figure rises to over 70%. Even so, we are constantly told that individual actions like using canvas bags and taking the bus will be enough to avoid the catastrophic effects of climate change. The truth is that the onus is on the major greenhouse gas emitters like Exxon Mobil and Shell Oil to simply stop extracting and distributing fossil fuels. Unfortunately, the pressures of the competitive market mean that they are not going to do this without a push.

As things stand, it makes more financial sense to use fossil fuels than renewable alternatives. However, there are many ways that governments can curtail the emissions of Carbon Majors through financial and legal incentives. A fundamental of the modern nation state is that the legislator should tax practices which they aim to discourage in society. This is why smoking is so expensive. Governments realised that by taxing cigarettes at an extremely high rate, they could better public health and make some serious dough while they were at it. By raising the price of smokes, governments can gradually decrease the number of smokers which in turn decreases the amount they have to spend on the treatment of diseases like lung cancer and emphysema. In theory, this increase in revenue can be put towards things like medical services and anti-smoking campaigns. This essentially means that governments can shift the costs that smoking imposes upon society onto those who actually smoke.

Similarly, governments can tax the use of dirty fuels which emit CO2 and use the extra cash to invest in renewable energy research. Some form of ‘carbon tax’ has already been introduced in 46 countries, including Ireland, Canada and Australia. Carbon tax means that fuels which result in higher carbon dioxide emissions are taxed at a higher rate, a policy which is all ‘stick’ and no ‘carrot’. By taxing carbon, governments can cut into the profits of companies who would otherwise be making a killing on fossil fuels. The hope is that Carbon Majors will then be incentivised to move toward renewable energies like solar and wind power. While a higher carbon tax would mean an increase in the prices of fuels like petrol, coal and gas for the consumer, it would also mean that clean energy sources could become more competitive.

The other side of the coin is renewable energy subsidies; the ‘carrot’ to the ‘stick’ of carbon tax. The government invests money in order to lessen the costs of energy from sustainable sources. The top 6 countries that subsidize renewables spend a combined total of 40 billion dollars a year. Subsidies can go a long way towards decreasing the financial loss Carbon Majors and consumers suffer when switching to cleaner sources of energy. By both taxing fossil fuels and subsiding renewables, governments can gradually make it so that renewables are the sounder investment. Since financial considerations are the only considerations corporations are likely to take on board, the use of both of these policies could go a long way towards reducing the footprint of Carbon Majors.

While straight-up carbon taxes are gaining popularity worldwide, there is a similar but more widely used group of policies called carbon ‘cap and trade’ schemes. These schemes involve setting a limit on how much CO2 can be produced in total then either giving or auctioning ‘credits’ to companies which equal that limit. If companies exceed their allowance, they are liable to incur very serious fines or even legal action. One way that companies can exceed their allowance is by buying (or trading) credits from other companies who are using fewer fossil fuels than they are allowed. With a carbon tax, companies can just take the hit and produce as much CO2 as they can afford. The advantage of cap and trade schemes is that while Carbon Majors still take a huge financial hit by using fossil fuels, there is a fixed upper limit on how much they can produce. Another advantage is that companies which can reduce emissions cheaply can then sell their remaining credits to companies which are struggling to meet their allowances and make a profit. In this sense, cap and trade schemes combine the carrot and the stick into one efficient bundle.

The main criticism of cap and trade schemes is that it allows Carbon Majors to carry on polluting as they’ve always done since it is still cheaper to pay for extra credits than to switch to 100% renewable energy sources. However, smart legislation such as lowering the upper limit on carbon emissions and thus raising the price of credits at auction should be enough to make these schemes workable. The main obstacle to these amendments, as with all climate-protecting plans, is that the companies who are profiting from the destruction of the environment can use their astronomical profits to lobby for the weakening or outright removal of cap and trade schemes in the countries in which they operate.

It is imperative that we do everything we can to curb the power of Carbon Majors to continue their crusade against the environment. Carbon taxes and cap and trade schemes are just two ways in which we can do this. In an ideal world, we would simply make it illegal to extract and burn fossil fuels. Unfortunately, no government is willing to take such drastic measures against entities that in many cases have more money, and thus more power, than the governments themselves. The CEOs of Carbon Majors are not necessarily evil people. In their eyes, the livelihoods of their many employees rests on their shoulders. What we need to convince such people is that while workers can probably find new jobs, it is very nearly too late to reverse the catastrophic effects of global warming. The question they must ask themselves is whether they would rather be responsible for a few lay-offs on one hand, or the destruction of animal life on earth on the other. The fact is that those are the only options.


The New Frontier: Plastic Pollution in the Ocean

Every minute, the equivalent of a truckload of plastic enters the sea. Since 2004, humans have produced more plastic than we did in the previous 50 years combined. As the global population rises, our need for cheap and sturdy materials rises with it. The problem with plastics is that they are too sturdy. Every piece of plastic ever produced still exists somewhere in the world. Once the plastic has finally disintegrated, that is by no means the end of the problem. Plastics in the ocean break down into tiny particles known as microplastics. Such particles are found throughout marine ecosystems; from the stomachs of fish, to the stomachs of the seabirds who eat them.

Microplastics are not only dangerous, but also extremely difficult to clean up since they are spread out by currents all across the sea. In order to be classified as a microplastic, a piece of plastic debris must be roughly the size of your little fingernail or smaller. There are over 320 million cubic miles of water in the world’s oceans. For a sense of scale, you could fit roughly 320 million cars into a single cubic mile. Scientists have estimated that there are up to 50 trillion pieces of microplastics in the oceans. Given these figures, to say that removing microplastics from the ocean is no easy task would be the understatement of the century.

The reason that high levels of plastic in the ocean are problematic is that plastics have serious detrimental effects on the health of almost all ocean life. Over 800 species of animals have so far been shown to be negatively affected by plastic pollution. Considering that number was closer to 600 in 2012, it is safe to assume that the figure will continue to rise dramatically in the coming years. What’s more, almost 20% of the animals shown to be affected by plastic pollution are already classified as endangered due to human activity. There are two major ways in which plastics can harm or kill marine life. First, they can be ingested. When marine animals ingest plastic, the pieces can remain in their stomachs for the rest of their lives. As the amount of plastic increases, the space remaining in the stomach decreases, causing the animal to starve. In addition to this, most plastics are toxic to animal life, causing conditions like cancer and birth defects. Second, marine animals can become entangled in the plastic. If this happens at a young age, the plastic can restrict the growth of the animal, causing them to become severely deformed. This is seen most often in sea turtles. The worst offenders when it comes to entanglement are pieces of discarded fishing gear.

The phenomenon of marine life being caught by gear that has been abandoned by fishermen is known as ‘ghost fishing‘. Nets, hooks, lines, and cages continue to catch and kill fish long after the fishermen have stopped using them. Roughly 30% of all fish that are caught by humans are caught in ghost fishing gear. When you consider the sheer scale of human fishing, this percentage is astonishingly high. Leaving plastic fishing gear in the ocean, plastic or otherwise, is both short-sighted and despicable. Fishing gear is specially designed to kill as much marine life as it can. When it is under the control of a fisherman, protected marine life like whales and sea turtles can be avoided or released. Even so, fishing of any sort is devastating to endangered species. When the gear is abandoned, however, there is no targeting of species, leading to indiscriminate destruction of marine habitats.

There have been a lot of stories in the news recently about how companies like McDonald’s and Starbucks are ditching plastic straws. While this is a step in the right direction, straws only account for roughly 1% of the plastic debris in the ocean. In order to make a real difference, the companies would have to stop using plastic straws, containers, bags, cups, lids and everything else. This is a perfect example of what’s known as corporate ‘greenwashing’. If the public perception of a company is that they are trying their best to reduce the environmental damage they are causing, less people will boycott the company’s products, leading to higher revenue. Because of this, companies make the calculated decision to sacrifice a small portion of their profits in order to further their public personas as stewards of the environment. This is not to say that small steps forward like those taken by McDonald’s and the like are not helpful. Carlsberg have recently announced that they are ditching the plastic rings connecting cans in favour of glue dots. This is a positive development, since these connector rings have been shown to strangle and stunt the development of marine life and seabirds.

Plastic is not distributed evenly throughout the ocean. There are 5 major places, known as gyres, where currents have forced plastics to accumulate into huge expanses of debris. The largest of these gyres is called the great pacific garbage patch (GPGP) and contains about 2 trillion pieces of plastic. That’s 250 pieces of plastic for every human on earth in just one place. The GPGP is around the size of Texas and weighs about the same as 500 jumbo jets. The accumulation of plastic in gyres like the GPGP makes it somewhat easier to clean up oceanic plastic, but it is still a monumental challenge.

When he was just 17, Dutch aerospace engineering student Boyan Slat devised a huge U-shaped machine to clean up the GPGP that he believes could clear 50% of the plastic in just 5 years. The device uses ocean currents to move with the plastic, but since it is largely above the surface, it moves faster than the plastic, gathering it as it goes. It was deployed in the gyre in September of last year but was immediately faced with a slew of setbacks. The device was not travelling fast enough, allowing some of the plastic to escape, then a 60-foot section of the machine broke off, meaning that it had to be brought back to shore for repairs. Another issue with the device is that it cannot collect microplastics. However, it is important to gather up as many of the large pieces of plastic as we can now, since they will become microplastics in the future which will be much more difficult to clean up. We are in full damage control mode.

Despite valiant attempts to reduce our plastic consumption and remove the plastic we have already dumped in the ocean, it is highly unlikely that this problem will be solved any time soon. If anything, it will get much much worse. Humans have a history of showing up at a new location and decimating the native wildlife populations. When we first arrived in Australia, huge animals roamed the land. These included a 2-and-a-half-ton wombat, a flightless bird twice the size of an ostrich, and a predatory marsupial the size of a tiger. Within a few thousand years of humans showing up, 23 of the 24 animals that weighed over 50 kilograms had become extinct. We have spread all over the planet now, leaving only a few havens in which animals may thrive. The new frontier of animal extinction is marine life. Plastic pollution, overfishing and ghost fishing have devastated marine life and seabirds already, and the rate of destruction is only going to increase. All we can hope for is that people wake up to the genocide we are committing under the waves in time to save at least some of the majestic creatures who call the sea their home.

The Race to Save Pando

First Published in UCD College Tribune

Pando is the largest living thing on earth. Weighing 6,000,000 kilograms, it is about as heavy as a thousand African elephants or forty blue whales. When you enter Pando, you may hear a soothing sound like the beating of tiny wings. Pando is a grove of 47,000 quaking aspen trees, named for the distinct sound their leaves make in the wind. Every tree in the forest is genetically identical. This is because they are all parts of a single being, connected underground by a huge root system. We cannot be sure of Pando’s age, but based on its rate of expansion, coupled with a knowledge of historic climatic conditions, it could be up to 80,000 years old. If Pando is this old, it is not only the largest known organism on earth but also the oldest. In a painfully familiar twist, humans pose a serious threat to this gentle giant.

Pando’s name derives from the Latin for ‘I spread’ as Pando started life as one seed, then gradually spread itself out over an incredible 106 acres of Utah, an area equivalent to 1,700 tennis courts. Aspen spread through a process called vegetative reproduction. They send out roots underground which travel horizontally for as much as a hundred feet before sprouting into new trees. The roots then carry water and nutrients to the new sprout as needed. One reason why aspen clones like Pando can get so big is that aspen are remarkably quick to repopulate an area following a major destructive event like a forest fire. Aspen compete with conifers for light and nutrients, a competition they may well lose without the help of forest fires. Unfortunately for aspen, humans tend to put out fires wherever we can, leaving conifers to creep into the aspen’s territory. This is just one of the ways in which we are harming Pando.

For the last hundred years or so, humans have been hunting predators like wolves, bears and mountain lions in Utah and the surrounding area, leading to an increase in ungulate (hoofed mammal) populations. The main culprits are a species known as mule-deer, who eat young aspen trees before they have time to grow a thick bark with which to protect themselves. Not only does a decline in predator populations mean that fewer mule deer are being eaten, but it also means that they have become more likely to stick around and enjoy the good eating. With no predators to chase them away, the deer see no reason to move on and find a new feeding spot.

It does not help that the US forest service allows ranchers to graze their cattle on Pando for two weeks every year. Aerial photographs taken over the last fifty years show that Pando is in serious trouble. Given such data, it is extremely irresponsible for the forest service to allow any grazing at all. You may well be wondering at this point why I’m telling you all this. Pando is not like other organisms. While it is a single being, Pando is also a vast ecosystem which is home to a huge variety of animals from black bears to wild turkeys. By saving Pando, we are saving not only a biological marvel but also a forest and everything that lives within it.

A healthy aspen grove should have trees of all ages growing within it. As in a human community, it is far from ideal for the individual trees to all be the same age. If everyone in a town is over 80, there will be no youngsters to replace them when they’re gone, and the town will die with them. This is exactly what is happening to Pando’s trees. The director of the Western Aspen Alliance and Pando expert Paul Rogers has said that in many areas there are “no young or middle-aged trees at all” and that the trees that remain are “very elderly senior citizens”. Aspen trees can live anywhere from around 75-150 years old. Worryingly, the average age of trees in Pando is 130 years; if we are to save it, we are going to have to move very fast indeed.

So what can be done to save Pando? Paul Rogers recently conducted an experiment in which parts of Pando were fenced off to stop ungulates from getting in. The experiment showed very promising results, although, despite the fences being 8 feet tall, the deer were somehow able to jump over them in some places and damage the new shoots. Some have suggested that to save Pando, wolves need to be reintroduced into the ecosystem to kill the deer. The proximity of Pando to campsites and cottages makes this idea hard to sell. The evidence suggests that taller fences around larger sections of the grove and a ban on all grazing should allow new trees to flourish. Once a new generation of trees come up and live to maturity, Pando will be in a strong position to live on for years to come. However, it will also face the very real threat of global warming if we do not significantly reduce our emissions soon.

Pando’s downfall is emblematic of the large scale ecological and climatic devastation that humans have wrought on this planet. By altering certain variables, we may have sealed Pando’s fate without even knowing it was there. It is important that knock-on effects like these are understood so that we may avoid repeating the same mistakes. Pando is also a symbol of how, with a bit of elbow grease and a bit less greed, we can at least partially right many of the wrongs that we have done to the natural world. When you are responsible for a problem, it is your responsibility to fix it. We can save Pando. Maybe by joining together to preserve this one beautiful colossus, we can create a success story that can serve as a poster-child for conservation efforts around the globe.

Gene Genie: The Scientist who Jumped the Gun on Gene Editing

First published in the UCD College Tribune

In November of 2018, Chinese scientist He Jiankui made an announcement that astonished the scientific community. He claims to have helped to make the first ever gene-edited babies with the use of a revolutionary technology called CRISPR. The babies, twins by the names of Lulu and Nana, were born to a father infected with HIV, the virus which causes AIDS. If Dr He’s experiment is successful, the twins will have an immunity to the virus. While this may seem at face value to be a noble goal, many believe that the risks involved outweigh the benefits.

Dr He’s experiments used a type of editing called ‘germline’ editing, meaning that any children that Lulu and Nana may have in the future will also carry this immunity. Germline editing involves making changes to reproductive cells. This means that any changes made to the individual’s genome will be passed on from generation to generation. This can be distinguished from somatic editing, in which the only person affected by the edit is the person who undergoes the procedure.

One reason why somatic editing is seen as more acceptable than germline is that people who undergo somatic editing have given informed consent prior to the procedure. While the parents of Lulu and Nana have given consent, the children themselves and any future children the twins may conceive have not consented to the potentially high risks. While HIV immunity could potentially be inherited by the descendants of these CRISPR babies, so could a myriad of unwanted and possibly even deadly side-effects.

Another concern that has been raised is that it is not clear whether Dr He’s treatment fulfilled an ‘unmet medical need’. With modern HIV treatments, someone who is carrying the virus can have the same expected lifespan as someone who is not and their chance of transmitting the virus to their children can be brought down to just 5%. Hence, geneticists worldwide have called for a moratorium on human germline trials. Critics say that gene editing technology has not yet been developed or tested sufficiently for use on human embryos. We simply do not yet know the long-term effects of genetic modification using CRISPR.

Despite a myriad of imaginable ethical hazards, CRISPR has the potential to revolutionize the biomedical sciences. CRISPR allows biologists to edit genetic information by using an enzyme called Cas9, which has the ability to cut strands of DNA. The process was pioneered in bacteria as a defence mechanism against viruses. Geneticists use CRISPR to target specific areas of genetic code and cut it in a specified region. Cutting a strand of DNA in the right place can cause a certain gene to be disabled, activated or replaced by one introduced by scientists. The possible applications of CRISPR range from curing cancer to eliminating malaria from mosquitos. One team at Harvard led by Prof. George Church even famously claimed that they will be able to ostensibly resurrect the woolly mammoth in the next year or two using the technology.

Some scientists, including mammoth-man George Church, have come out in defence of He. While Church had reservations regarding He’s level of transparency, he suggested that enough studies had been carried out that maybe it was the right time to end the moratorium anyway. While he accepted the risk of off-target mutations, he said that the risk ‘may never be zero’ and that Dr He had done enough to minimise it. This contradicts the views of most scientists and institutions, including a statement released by Francis Collins, the director of the National Institutes of Health. Collins denounced He’s work, saying, among other things, that ‘the possibility of damaging off-target effects has not been satisfactorily explored’.

Genes are extremely complex things. Locating a single gene and modifying it requires an extraordinary level of precision and even when it is successfully targeted it is impossible to fully predict the consequences. Though we have been studying certain genes for a very long time, we still do not know what the indirect effects of certain edits may be as no long-term studies of how edits affect the human body have been carried out as of yet. Such unintended effects are known as ‘off-target mutations’.

The final concern is perhaps the most serious. While CRISPR may in the future be used to treat some forms of cancer, it is possible that premature germline editing like the kind He carried out may actually increase the risk of cancer in people like Lulu, Nana and their descendants. Two recent studies have raised concerns about an off-target effect that CRISPR may have on a gene for a protein known as the ‘guardian of the genome’: p53. This protein is responsible for repairing or destroying damaged DNA. A mutated or ineffective p53 gene has been shown to be responsible for nearly half of all ovarian cancers and a significant portion of many other types of cancer too. CRISPR interventions activate p53, since DNA has been cut and must be either repaired or destroyed and p53 undoes the work CRISPR has done. The worry is that this could result in a kind of artificial selection on the cellular level, as CRISPR is more successful in cells with ineffective copies of the p53 gene, which are more at risk of becoming cancer cells. So far, only certain forms of cells have shown evidence of raising the risk of cancer when modified using CRISPR and no company is attempting clinical trials using CRISPR on these cells. Some scientists have called the recent studies concerning p53 a ‘cautionary tale’ since they may affect future CRISPR trials that are yet to begin.

CRISPR is an incredible technology that will surely be responsible for many breakthroughs in biological and medical science. It may someday give us powers that we cannot even conceive of today. However, that time has not yet come. It is imperative that we do not jump the gun. Dangerous, premature experiments like Dr He’s harm the public perception of gene editing and, in turn, harm the funding available for important research. While we should not give up on gene editing, we should also not use it to play with human lives until we know more about the benefits and the risks.

Getting High on Grass – Can Plants Really Fuel a Plane?

In the wake of recent studies showing how dangerously close to the brink we are when it comes to climate change, it is more important now than ever to seriously consider every possible alternative to environmentally damaging fossil fuels. One such alternative comes in the form of biofuels.

Humans have been using biofuels for as long as we’ve been using wood to fuel our fires. In the last hundred or so years, however, we’ve begun to understand how plant matter can be converted into liquid fuels that could soon power a plane.

In this piece, I’ll be looking at where biofuels are now and where they need to be if we are to significantly reduce CO2 emissions. I’ll be concentrating my efforts on recent attempts by the scientific community to make grass a viable fuel for transportation.

Grass is the most abundant plant on the planet. In my home country of Ireland, more than two thirds of all land is covered in naturally growing grass. If we could refine and perfect the process of turning grasses into fuel (grassoline), this would be a real contribution towards slowing the march of climate change.

The problem right now is that it is expensive and inefficient. Many scientists in the field, however, think that given time and money, we could tap into this huge source of unharnessed power and save the planet in the process.

The reason grass in particular is being considered as a biofuel is not because it is necessarily the most efficient plant to use, but rather because of its abundance and willingness to grow in fields that are inhospitable to food crops, known as marginal lands.

Another reason that grass is attractive as a biofuel is that it is not really needed for anything else. Other candidates for biofuels (like wood, sugarcane and soybeans) have the disadvantage of being useful for things like furniture, rum and tofu.

But why aviation fuel? While cars are slowly turning electric, it is unlikely that planes will follow suit any time soon. The other more pressing reason is that travelling by plane is far worse for the environment than any other mode of transport.

This is down to two factors; first, planes are less efficient than other modes of transport in terms of emissions per passenger mile. Second, they allow us to travel a far greater number of miles than we would otherwise be able to.

The idea that we could use grass, algae and other plants to produce aviation fuel is not nearly as crazy as it sounds. The fossil fuels which we currently use are themselves made of organic matter that has, over a very long time, undergone a natural process called pyrolysis. Human beings have been using the process of pyrolysis for our own gain for thousands of years in the form of charcoal burning.

Pyrolysis involves separating materials into their constituent molecules in the absence of oxygen. This means, very roughly, heating up the material to a specified temperature, covering it, and allowing it to separate into liquid, solid and gas. These products can then be refined into fuels.

Recently, it has been found that microwave heating produces a higher pyrolysis yield than traditional methods since it can be done entirely in the absence of oxygen and at a very precise temperature. Another benefit is that the characteristic ‘hot spots’ of microwave heating aid in pyrolysis.

You might be thinking that grass is an important source of food for livestock. The beauty of using grass as a biofuel is that this resource would not be lost. The solid by-product of grass pyrolysis can still be fed to livestock. What’s more, by removing the liquid constituents, the feed can be preserved much longer than fresh grass cuttings.

In the UK, biofuels already account for nearly 3% of all road and non-road mobile machinery fuel, but with the predicted change in efficiency given a few years, biofuels could eventually account for a lot more than that.

Right now, scientists can only produce a few drops of biofuel from grass in the laboratory. Tests carried out at Ghent University in Belgium show, however, that there is a potentially very efficient energy source in grass if we can learn to harness it correctly.

In April 2017, the researchers at Ghent University found that a certain type of bacteria (clostridium) can be used to metabolize certain grasses into decane, a key ingredient in both petrol and aviation fuel. While this breakthrough cannot yet be used effectively, it is key knowledge that will inform research into better biofuel technologies.

Hang on, you might say, if refining plant matter gives us the same fuel as we are already using, then why is it better for the environment? Surely biofuels release the same amount of CO2 as fossil fuels? This is indeed true.

The difference is that the CO2 in living plants has only recently been absorbed from the air by the plant and is simply being released again. It is part of the normal CO2 cycle. With fossil fuels, the CO2 has been absent from the environment for a very long time, trapped underground. By burning it, we are releasing extra CO2 rather than what was already there.

A major obstacle to biofuel efficiency growth is that governments and companies are not willing to invest heavily in something that may not yield solid results for years to come. This is simply short-sightedness. The science will continue to improve. Lack of investment only slows down the process. The people who invest heavily now will surely see a huge return in a matter of years.

The investment situation poses a classic catch-22. Companies are not investing heavily in biofuels because it will take so long for the investment to pay off. The thing is, if companies were to invest more heavily in biofuels, the technologies would improve faster and investors would see a quicker return.

Another well-known obstacle in the way of all renewable energies is the huge sums of money tied up in the fossil fuel industry. The industry is worth about 7 trillion USD globally. No wonder, then, that lobby groups are able so easily to sway policy-makers.

Regardless of what figures in the US like Rex Tillerson, Sean Hannity, or indeed their president, may say, climate change is a very real and very serious danger. Biofuels are just one example of the many ways in which we can combat this danger, but they are one which will continue to grow in importance for years to come.

As the renewable energy sector grows and the fossil fuel sector declines, we should see an increase in biofuel investment and an acceleration of biofuel technology development. We can only hope that fossil fuel companies lose their chokehold on governments and investors before it is too late for the planet.

Some Further Reading and Research Sources

Opting Out- The Future of Organ Donation

First Published in UCD College Tribune

Organ donation has long been considered an important and cost-effective treatment for a variety of conditions which lead to organ failure. For many patients suffering from such conditions, transplantation is the only chance for survival. Since 2010, approximately a million organs have been donated worldwide. Despite both the effectiveness of the treatment and the general public support for organ donation, there is a persistent global shortage of transplantable organs. In recent years, governments and regulatory bodies have been exploring a variety of ways to decrease this shortage, potentially saving hundreds of thousands of lives.

This article summarises the most significant regulatory and technological developments around the world and evaluates their effectiveness in increasing the availability of transplantable organs, focussing on the move from an ‘opt-in’ to an ‘opt-out’ system. The importance of informing the public on how states can legislate to increase the efficiency of their donation system cannot be underestimated in the fight to improve a system which saves countless lives but is capable of saving many more.

In an opt-in, or ‘informed consent’ system, organs cannot be harvested unless the donor has given explicit consent during their life. The presumption is that nobody has consented until we know otherwise. Countries which use this system include Ireland, America, the UK, Germany and Australia. Last year Ireland announced that it will join the long, and ever-growing, list of countries which use an opt-out system. By contrast, in an opt-out, or ‘presumed consent’ system, the presumption is that everyone has consented unless they have explicitly refused. Countries which use this system include Spain, Belgium, Finland, France, Greece, Hungary, Israel, Italy, Sweden and Turkey.

A highly regarded 2006 study in the Journal of Health Economics showed that countries with opt-out systems have donation rates 25-30% higher than those which require explicit consent. This makes perfect sense, especially considering evidence from the same study, which states that while 85% of US adults support organ donation, only 28% are registered donors. An opt-out system could bring those numbers much closer together.

The same pattern of widespread support for donation but low numbers of registered donors seen in the US appears around the globe. Busy lives and lack of motivation mean that many people who would consent if formally asked simply do not specify that they would like to donate, and this contributes to the shortage of transplantable organs. Would it not be better if inertia and busy lives resulted in more organs for transplantation rather than fewer?

Given that far more people support donation than not, an opt-out system also means that the presumption of the law is in line with the majority wish. A simple legislative shift has the power both to save lives and make the law more representative of how people actually feel about organ donation. Spain has been the world’s leader in organ donation for 25 years running by a significant margin. The most cited reason for this is their efficient opt-out system. Spain’s success can also be linked to better hospital protocols and the fact that they do not cap the age at which donor organs will be considered. High public awareness may also contribute to Spain’s edge over other opt-out countries.

Governments have also tried to increase the availability of organs by applying the ‘priority rule’, where people who are on the donation register are given priority when organs are being allocated. If there are two potential recipients who are in the same stage of organ failure, but only one of them is on the register, then that person will receive the organ first. The idea is that people will consent to donation on the basis that it will increase their chance of survival if they are ever in need of a transplant themselves.

While on the surface this tactic seems to appeal to self-interest, it can also be seen as a reminder of the hypocrisy of benefitting from a system to which you do not contribute. You cannot expect others to donate their organs to you if you refuse to donate your organs to others. This tactic for decreasing the shortage of transplantable organs has also proved, usually alongside an opt-out system, to be an effective tool for saving lives.

The final policy I address is controversial; in almost all organ donation systems worldwide, the family of the deceased has the power to veto the consent given by the deceased during their life. Even Spain gives families the power of veto, though high public awareness means that very few families actually do so. There is no reason, in my view, that families should be given this power. It is a violation of the donor’s autonomy and yet another obstacle between a potential recipient and the organs that could save their life. If my family has a problem with organ donation, they can choose not to donate their own organs, but what happens to my body is my call and mine alone.

According to UNOS, around 20 people die every day in the US alone due to a lack of transplantable organs. By making simple legislative changes like removing the family’s power to veto and introducing opt-out donation and the priority rule, they could in theory cut that number in half. This is not some elevated ethical debate to be discussed in classrooms. What legislators decide with respect to this issue has incalculable effects on normal people.

None of us know if and when we may require an organ transplant. We are all vulnerable to the dangers of disease, age and injury. By doing everything in our power to increase the number of organs available, not only do we save the lives of others, but we also ensure that if the time comes when we are in need ourselves, we can rest assured that there is an efficient and sensible system in place to save us.

As White as Coal: The Subjectivity of Colour Perceptions

First Published in UCD College Tribune  

Imagine two young children are being taught the names of the primary colours. They are each presented with a tomato. One child sees a blue object and the other sees a yellow object. Both, however, are told that tomatoes are red. Once the children have internalised this label, if you present them with a series of objects of different colours, they will both be able to pick out which objects are red, even if they don’t see the same thing.

So how do you know that the red you see is the same as the red I see? This is an old philosophical question. Descartes, the ‘father of modern philosophy’, denied that colours were objective qualities of objects. He thought that when we perceive an object as being red, we are not given evidence that the object is red, but only that it produces a particular sensation in us. This is by no means just a question for dead philosophers. To this day, scientists are still attempting to find an answer.

Broadly speaking, the scientific view of colour perception relies on three key factors: the wavelength of light reflected, the apparatus whereby we gather a signal from light, and the processing of that signal by the brain. Different wavelengths of light are said to correspond to different colours. At the high energy end of the spectrum we have red light (short wavelength) and at the low energy end, we have blue light (long wavelength). This, of course, is not the full electromagnetic spectrum but only the tiny section that we can see. Different objects appear to be different colours because their surfaces reflect different wavelengths of light into our eyes. However, this does not tell us how our bodies perceive these differences.

Rods and cones have long been known to affect how we see colour. Each cone contains a different photopigment, proteins which change shape in response to light, triggering chemical reactions which send a signal to the brain. Humans have three different types of cones which pick up red, green and blue light. Rods allow us to see in low-light but since there is only one type, we cannot distinguish between colours as easily when it is dark. This is why we see in ‘black and white’ at night but in glorious technicolour during the day.

The final stage of colour perception is the processing of information sent by rods and cones to the brain. Since our cones can only pick up three colours of light, the brain must do most of the work when it comes to distinguishing between colours. When we perceive something as yellow, for example, it is because our cones have picked up red and green light simultaneously and our brain has processed this information to give us the sensation of perceiving yellow.

Colour blindness occurs either when there is a fault in one of the cones or in the pathway to the brain itself. The most common form is a fault in the ‘red’ cone, which leaves sufferers unable to effectively distinguish between red and green. On the other end of the spectrum are ‘tetrachromats’ who have four different types of cone. Birds are tetrachromats. They are sensitive to ultraviolet light which is invisible to the human eye. Some studies have suggested that up to 3% of women are tetrachromats, with their fourth type of cone cell allowing them to differentiate between red and green better than the rest of us. The reason there are more tetrachromat women than men is that the cone cell genes are carried on the X chromosome.

Male squirrel monkeys lack a cone containing red photopigments, meaning that they can’t see red light. In 2009, however, researchers at the University of Washington experimented with using gene therapy to imbue existing cones in the eyes of two monkeys with red photopigment. After the therapy, the monkeys were able to see red, showing how versatile colour perception is, and how crucial our individual biology is to how we see the world.

Now that we’ve had a brief run-through of the mechanisms which allow us to see colour difference, we can begin to ask how the scientific view helps us to answer our original question: how can I know that my red is the same as your red? The short answer, in my view, is that science provides little help in this regard. It can confirm that we all consistently identify the same objects with the same labels, but we knew this already. Though science describes and explains the physical process which allows colour perception to take place, it does not tell us anything about what it feels like to perceive colour. If I show you a tomato, you will tell me that it is red because the colour you see is the colour you call red. I will call it red because the colour I see is the colour that I call red. Even if the colour we see is completely different, this won’t cause us confusion when identifying objects. All that matters is that we use the same label.

It seems to me that we are likely never to find an empirical answer to this question. No amount of science can allow us to see through someone else’s eyes. We will always be confined to our own perception of the world and our own alone. This sensory isolation requires that we can never know the quality of someone else’s experience. Even if a scientist could hook someone’s perceptions up to a computer screen, the colours seen by the scientist on the screen would be processed by the scientist’s eyes and brain in a way that could be radically different to the way the subject is processing them. The only way we could truly know if people perceive colours the same way is if we could become someone else. Unfortunately, outside of Freaky Friday and Quantum Leap, this is not an option.

The Fight to Ban Neonics

Back in February, the European Food Safety Authority (EFSA) released an updated report on the harmful effects of certain pesticides on a variety of bees. Confirming conclusions made in their 2013 report, the EFSA found a wealth of evidence supporting the claim that the world’s most popular pesticide group, neonicotinoids (or neonics for short) are harmful to both honeybees and bumblebees.

In April, following the EFSA’s findings, the EU put into place a complete ban on the use of neonics outdoors, expanding on the partial ban imposed in 2013 which prevented neonic use on certain crops.

The move, which should see all European neonic use confined to greenhouses by the end of the year, was welcomed with open arms by environmental groups like Friends of the Earth and the Task Force on Systemic Pesticides. This fight, however, is far from over.

Neonics are a relatively new kind of pesticide. The use of these ‘systemic’ pesticides only dates back about 20 years. According to the UK Pesticide Action Network, “Unlike contact pesticides, which remain on the surface of the treated foliage, systemics are taken up by the plant and transported to all the tissues”. This includes the pollen and nectar which bees collect to feed their colonies.

Systemic pesticides have also been found to persist in soil, water, dust and even air long after the chemicals have been sprayed. An open letter written in April and signed by 242 esteemed scientists claimed that “the balance of evidence strongly suggests that these chemicals are harming beneficial insects and contributing to the current massive loss of global biodiversity”.

The use of toxic systemic pesticides, which has steadily grown in recent years, is not just problematic for bees. The WIA (Worldwide Integrated Assessment of the Impact of Systemic Pesticides on Biodiversity and Ecosystems in case you’re wondering) included a report on the impact of these pesticides on vertebrate populations.

The report reviewed 150 studies and concluded that neonics were both directly and indirectly affecting terrestrial and aquatic vertebrate populations. Some birds, for example, are directly affected by ingesting seeds coated in toxic neonics.  Fish, too, have been found to be vulnerable.

While the report found that the amount of chemicals in the air were non-toxic to vertebrates at present, neonics are causing sub-lethal effects like stunting growth and reproductive success. Global populations of insect-eating birds, for example, are faced with a marked decrease in the amount of prey available to them. This is an example of an indirect harm caused by neonics.

This food chain effect is incredibly important to consider. Bees are the ecological backbone of a vast number of ecosystems. The knock-on effects from the decline in bee populations will increase in scope and scale until a worldwide ban on neonics and other systemic pesticides is firmly in place.

This goal, however, is far from being achieved.  A 2017 report published in Science found toxic neonics in 75% of the world’s honey. Another study conducted the same year in Germany found that three quarters of flying insects have disappeared in the last 20 years, a period which coincides quite neatly with the introduction of neonics.

Multinational companies like Bayer and Syngenta which manufacture neonics like imidacloprid and clothianidin, will fight tooth and nail to prevent ecologically responsible policy from passing into law around the world.

Back in 2013, when the partial ban was proposed, Syngenta went as far as to threaten legal action against individual members of the EFSA, whose job it was to carry out an unbiased scientific evaluation of Syngenta’s products. For these business giants, profit margins are, as usual, more important than preservation of the biodiversity of life on earth. We must be ready for their inevitable appeals.

The EU and others, like Canada, are setting the example for other governing bodies to follow. If this problem is not addressed soon, however, we will leave future generations with a planet far less diverse and bursting with life than the one we had when neonics were first concocted.

Neonics aside, humans are already the cause of the most recent of earth’s six mass extinctions. It says something about a species when they can take their place on a brief list which includes both asteroid impacts and cataclysmic eruptions.

At this point, we are in full damage control mode. Conservationists are fighting not only against pharmaceutical giants which wield more power than it should be possible to wield, but also against the clock. The public, however, have proved that this is one issue with which they can affect real change.

Alongside the EFSA’s report, a driving catalyst for the EU’s ban on neonics was a petition started on the campaign platform ‘Avaaz’. The petition has received a staggering 5 million signatures. It is clear that people around the world care much more about preserving the biodiversity of this planet than they do about Bayer’s profits.

The Avaaz petition is a reminder that there are more of us than there are of them and that we can in fact stand up to them. We all know that rich bullies want to destroy this planet to fill their pockets, but we must not let them get away with it.

I urge you, if you see a petition or a fundraising event for this issue, to become as involved as you possibly can. This issue is, if you’ll pardon my language, extremely fucking important.

Header image credit – Farm Futures

Is There a Relationship Between Income Inequality and Happiness on a National Scale?

We’ve all heard Bernie Sanders talk about how the top 1% of earners in the world own more than half of all global wealth. Unfortunately for most, Bernie is not wrong. In recent years, income inequality has been growing globally at an alarming and ever-increasing rate.

It has been growing, however, at vastly different speeds in different countries. It seems that the way in which a country legislates has a real and important effect on inequality. In this piece, I’ll examine the possible relationship between income inequality and happiness by looking at figures from, among others, the World Happiness Report (WHR) and the World Inequality Report (WIR)

It is definitely worth noting that happiness is a subjective and complex notion which surely depends on any number of factors outside of wealth. My aims here are simply to a) showcase some pieces of evidence (in the form of graphs from various sources) which suggest a link between inequality and happiness and b) to provide a largely theoretical discussion of the possible mechanisms for such a correlation and what the implications are if the correlation holds water.

Before I go any further, I’ll tell you a little about the measurements being used. For happiness (or more accurately ‘subjective wellbeing’), the figures come from so-called Cantril ladder answers. The Cantril ladder question is simply asking people to rate how happy they are on a scale of 1 to 10. On which rung of the ladder do you think you are? For inequality measurements, the Gini Coefficient is perhaps the most useful here. The Gini Index shows how much inequality there is in a country on a scale of 0 (perfect equality) to 1 (perfect inequality) by measuring the “average distance between the income or wealth of all the pairs of individuals” (WIR). Some graphs included in this report, however, use more tools than just the Gini.

Oishi and Kesebir. Link in sources.

Back in the seventies, the ‘father of happiness economics’ Richard Easterlin found that while people with a higher income in a given country were more likely to be happy, this relationship did not hold up on a national level. While the US is the wealthiest country on earth, for example, it ranks just eighteenth in the 2018 World Happiness Report. Though there is a correlation between absolute wealth and happiness in the short term, it is by no means guaranteed that a country with a higher GDP will be happier than one with a lower GDP, nor is it guaranteed that an increase in the wealth of a country will positively affect the country’s ranking in the world happiness report.

From World Happpiness Report – Link in Sources

The above graph from the WHR shows that while average US income more than doubled over the studied period, happiness was the same if not lower in 2016 than it was in the early seventies. This is the Easterlin Paradox in motion.

There could, of course, be any number of reasons for the findings shown in the above graph (WHR figure 7.1). A possible explanation is the idea of diminished returns. This is the concept that as we acquire more and more wealth, the happiness that a given quantity of money brings us diminishes. If most people won fifteen grand on the lottery, for example, the money would transform their lives for the better. If Bill Gates or Donald Trump won the same amount, it is debatable whether they would even notice.

This idea could help account for the theoretical reasons why inequality should affect happiness. If, as the data shows, the majority of global wealth is being accumulated by people who already have plenty to spare, there will not be a huge ‘return’ of happiness. In a perfectly equal world, everybody requires the same amount to be satisfied.  In a perfectly unequal world, the majority of people require little to be satisfied but do not receive even that because all the money is tied up in the bank accounts of people who take their yachts for granted.

From World Inequality Report – Link in Sources

Easterlin’s hypothesis was that our happiness depends not on the absolute wealth of the country we live in, but rather where we rank in the social pecking order within the country. This is the concept of ‘keeping up with the Joneses’, which could also be a possible mechanism whereby inequality may affect happiness. In a perfectly equal world, people look around and see that everyone around them has the same amount of money they do. In a perfectly unequal world, the vast majority of people can look around and see some people who own more money than they could make in a hundred lifetimes at their salary. This is not to say that everyone would be unhappy because of petty jealousy but it is disheartening for someone who is starving to see someone else participating in an eating competition until they make themselves puke. Higher income inequality means more people starving and more people who have enough money to last a hundred lifetimes, lying dormant and useless in an offshore bank account.

From World Inequality Database – Link in Sources

Figures from the World Inequality Report show that while the income of the Russian population grew by a total of 34% between 1980 and 2016, the income of the top 0.001% over the same period in Russia grew by a gargantuan 25,269%. When we look at the global rankings, we see that, for the most part, the most equal countries are also the happiest and the least equal are the least happy. Some readers may question here whether correlation implies causation or if external factors may be influencing the data. Happiness, after all is a slippery and complicated thing to measure. In the US, for example, low happiness levels relative to wealth may be due to such factors as high rates of gun violence, racism and obesity or any number of other problems.

From the Guardian – Link in Sources

However, if we look at the trends over time on a global scale, there seems to be a link and it is important that we explain that link if we are to learn how best to organise society in terms of subjective wellbeing. Perhaps some countries have both high happiness and low inequality because they have effective governments with a knack for social policy. These governments may provide the infrastructure for happiness through effective legislation aimed at increasing public wellbeing. Might it not be their legislation in other areas which increases national happiness, thus making our apparent link redundant?

It makes sense to me to conclude, at least, that part of the effective policy required to increase national happiness is legislation designed to minimise income inequality. Raising the minimum wage. Raising taxes for the wealthy and using that money for social goods. This is what smart governments do. Legislation influences both the happiness of a country and its place in the Gini index. What is good for income equality may also be good for happiness.

Research Sources

Guidelines on Measuring Subjective Well-being – OECD

Income Inequality Explains Why Economic Growth Does Not Always Translate to an Increase in Happiness – Shigehiro Oishi and Selin Kesebir

Inequality index: where are the world’s most unequal countries?– The Guardian

Mapping Three Decades of Rising Income Inequality, State by State – Richard Florida

Money and Happiness: Rank of Income, not Income, Affects Life Satisfaction  – Christopher J. Boyce, Gordon D. A. Brown and Simon C. Moore

Purchasing Power Parities – OECD

Richest 1% own half the world’s wealth, study finds – Rupert Neate

The World Factbook – The CIA

World Happiness Report

Word Inequality Report

 Header Image Credit: Prazis Images (via Big Think)

A Pulsing Sea – The Effects of Seismic Airguns on Whale Populations

Whales are notoriously vocal animals. Indeed, the catalyst for the ‘Save the Whales’ campaign of the 1970s can be said to be the release of the album ‘Songs of the Humpback Whale’ recorded by bio-acoustician Roger Payne. This was the first time that the public was able to hear and appreciate the astonishing variety and beauty of the Humpback’s songs. This love affair with the whales came in the nick of time, since the humpback population had at that time fallen to a historic low. It is estimated that by the late 1960s, over 90% of humpbacks had been wiped out by human activity.

Since the early 1920s, a technique known as ‘reflection seismology’ has been used to locate reserves of natural resources such as oil, gas and salt. Reflection seismology operates on much the same principle as sonar. Sound waves are emitted which reflect off the sea floor and are then measured by an array of sensors. Using this technique, areas of the sea floor can be accurately mapped, and it is possible to determine whether natural resources lie beneath the rock. Modern reflection seismology is carried out using huge arrays of seismic ‘airguns’. These airguns can produce sounds of up to 240 decibels, over twice the volume of a standard rock gig. What’s worse, this noise level is produced every 10 seconds, 24 hours a day.

Whales and dolphins use sound to communicate with each other and, in some cases, for the echolocation of prey. Although insufficient research has been conducted to ascertain the detrimental effects of seismic testing on whales, preliminary data shows that almost all cetaceans give seismic airguns a wide berth. Further, sightings of cetaceans fall significantly when seismic testing is being conducted in a given area.  Even in the absence of solid data, mere common sense dictates that the levels of noise produced by seismic testing may well prove to seriously harm the hearing of cetaceans, as well as disrupting their feeding, mating and migratory habits.

It is not just whales that are at risk. During periods of seismic testing, local fishermen have reported an increase in dead fish floating in the sea. Squid, crabs and fish eggs have also been shown to be harmed by seismic airguns. It seems, then, that as well as deafening and disorienting endangered whales, seismic testing may also be harming their ecosystem and thus limiting the availability of their prey. This kind of test may have a knock-on effect which could decimate entire marine ecosystems.

On the 1st of February 2018, seismic airgun testing off the coast of Newcastle, Australia was approved by NOPSEMA. The tests, which will be carried out by Asset energy, are approved right up until the 31st of May, with the whale migration set to begin around the 1st of June. This has been met with serious resistance. Greenpeace Australia campaigner Nathaniel Pelle noted that “Whales and other endangered species do not adhere to the Gregorian calendar and do not know the difference between May 31 and June 1”. The fact that this must be noted at all speaks to the greed and short-sightedness of regulators and fossil fuel companies.

A final and crucial point to consider is that even if seismic tests did not damage marine populations directly (which they certainly do), they are a gateway to offshore drilling, a practice which damages marine populations in a number of ways. First, there is a possibility of oil spills which, as we all know, can be cataclysmic events for marine ecosystems. Further, when the oil is successfully extracted, it will be burned as fuel, releasing carbon dioxide into the atmosphere and accelerating the effects of climate change. Renewable energy sources such as wind turbines and hydroelectric dams are the planet’s last hope for any sort of meaningful recovery. One may consider it an added bonus, then, that these energy sources do not require that we seriously harm marine species while they attempt to recover from the immeasurable damage that humans have already inflicted upon them.


Beachapedia – Seismic Surveys

Bielby, Nick – NOPSEMA accepts environmental plan for seismic testing off Newcastle coast and Concern over plan for seismic test off the coast of Newcastle

Gordon, Jonathan C.D et al. – A Review of the Effects of Seismic Survey on Marine Mammals

Greenpeace Australia – Humpback whale migration threatened by seismic blasts

Hannam, Peter – ‘Whales don’t follow the Gregorian calendar’, opponents of seismic testing say

Stone, Carolyn J. and Tasker, Mark L. –  The effects of seismic airguns on cetaceans in UK waters

Photo Credit: Maui Magic