Win Win Win Win: The Magic Science of Plasma Waste Converters

First Published in the UCD College Tribune

Humans have an incredibly extensive waste problem. Right now, most of that waste is sent to landfills where it takes up space for thousands of years, leaching harmful chemicals and gases into the soil and atmosphere. Alternatively, we send our waste to incinerators which burn it for energy, but which release harmful greenhouse gases (GHGs) and toxic by-products in the process. A large proportion of our plastic waste ends up in the ocean, where it strangles and poisons fish, seabirds and marine mammals. What if I told you that there was a way to get rid of almost any type of waste in one machine, that the machine would release no harmful chemicals or GHGs, and that the process would produce useful by-products and excess energy that could be sold back to the grid? Such a machine exists right now; the plasma waste converter (PWC).

While incinerators are able to extract about 15% of the potential energy from rubbish, PWCs can extract an incredible 80% through a process called ‘gasification’. Plasma is ionised gas, meaning that it contains roughly equal numbers of positively charged ions and negatively charged electrons. It is often called the fourth state of matter since its characteristics are so different to those of liquids, solids and gases.

One way you can make plasma is by creating an arc of electricity between two rods, then passing a gas like argon through it. This set-up is known as a plasma torch and can heat gases to a higher temperature than the surface of the sun. Plasma torches were invented by NASA in the 60s to test how much heat the hulls of their spaceships could withstand. The crucial difference between using a plasma torch and using an incinerator is that in PWCs, combustion doesn’t take place. That means no smoke, no GHGs and no ash. The plasma breaks down the bonds between atoms, separating them into very simple forms. Despite the extremely high temperatures, it would be wrong to say that the waste is being ‘burned’; rather it is being decomposed at an accelerated rate.

One of the products of gasification is, you guessed it, gas. This energy-rich gas, known as syngas, is largely made up of hydrogen and carbon monoxide. Syngas mainly comes from the gasification of organic matter. As the gas expands, it spins a turbine, generating electricity. The high temperature of the gas can also be used to evaporate water, generating steam to turn another turbine. The syngas itself can then be burned for fuel or scrubbed with water and released safely. Remember, all of this energy production and revenue is coming from rubbish. We are talking about the plastics that are decimating marine life. Metals, fabrics, wood, even toxic or hazardous waste from industrial run-off or medical facilities. This is stuff that we desperately need to get rid of and by getting rid of it like this, we can also take some of the stress off an already strained energy production sector.

The solid by-product of gasification is called ‘slag’. Slag is produced mainly from inorganic materials like metals. It can be used in construction to bulk up concrete and tarmac, making it a very useful commodity. The molten slag also pools at the bottom of the chamber and helps to maintain the temperature, reducing the energy consumption of the PWC. The real magic happens when you pass compressed air through molten slag to create a material known as ‘rock wool’. Rock wool is currently made by drilling into rock, melting it down and spinning it in a centrifuge. Made in this way, rock wool is sold at one US dollar per pound. When it’s made of rubbish instead, it can be sold at just ten cent per pound.

Rock wool can be used in a number of ways. As an insulation material, it is twice as efficient as fibreglass and could significantly decrease heating and air conditioning bills, further reducing the carbon footprint of gasification. Surprisingly, you can also hydroponically grow plants from seed in rock wool. Perhaps its most amazing use is that it can clean up oil spills. Rock wool is lighter than water and extremely absorbent. This means that if you spread it out over the surface of an oil spill, it will float and absorb all the oil. The rock wool can then be collected with relative ease. Slag and rock wool are two more saleable products that can increase the economic viability of plasma waste conversion.

PWCs are currently being built all around the world. Some plants are already so efficient that they need to take rubbish out of landfills to use as feedstock. There is even a mobile plasma torch on the back of a truck in the US which can be jammed straight into landfills, which act as makeshift gasification chambers. The need to reduce GHG emissions and simultaneously fix our massive waste problem has generated huge interest in PWCs in recent years. Landfills have only one way to make money; they charge you a ‘tipping fee’ for getting rid of your waste. Since PWCs can generate revenue from both energy production and by-products, they can make their tipping fees much more competitive.

So why haven’t these things solved the problems of pollution and climate change already? The answer is largely that PWCs are still a relatively new technology. The cost of building and operating one is still much higher than that of some of its competitors including landfills and incinerators. There has not yet been standardisation of the design and thus the huge and complex machinery must be custom-built every time. The energy needed to power PWCs is also very high, especially compared to incineration, which requires only a match. It must be said, however, that although it takes a lot of energy to run a PWC, you will very quickly make all that energy back and more. PWCs are extremely efficient long-term; unfortunately, short-term profits dictate much of what happens in society.

Fossil fuels are becoming more and more scarce and their price is constantly being driven up by various international climate change initiatives. With thousands of landfills already full and the global population expected to exceed 10 billion by 2050, rubbish will not be scarce for a very long time. This really is a win win win win win. One machine can get rid of harmful waste, cut GHG emissions, produce fuel, energy and construction materials and clean up oil spills all while making a profit. An investment in plasma waste converters is not only economically sound, but it is also an investment in the future of our planet.

Short Change: Artificial Visionaries

First published in UCD College Tribune

Researchers at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland are investigating the possibility of partially restoring sight to the blind by using a device known as an optic nerve implant (ONI). The vision created by these ‘bionic eyes’ is known as artificial vision. The device works by bypassing the eyeball and sending electrical signals directly to the optic nerve, the pathway through which visual information reaches the brain. 

For cases in which this pathway is itself damaged, a device can be implanted directly into the visual cortex. One such implant, known as ‘Orion’, was recently used with great success to restore partial vision to 6 people who had been completely blind for a number of years. However, this surgery is quite risky. ONIs allow people with damaged eyes to recover sight without the need for invasive brain surgery. Macular degeneration and retinitis pigmentosa are examples of ocular afflictions that can be treated in this way.

The researchers at EPFL have shown that ONIs can produce specific and unique responses in the brain. This means that the artificial vision produced by the implant can theoretically inform the user about things like the location and movement of objects. When you close your eyes and put pressure on your eyelids, the flash of light that you see is known as a ‘phosphene’. In other words, phosphenes are the sensation of seeing light without any light actually entering the eye. This is roughly what artificial vision looks like, so people must undergo training in order to interpret what they are seeing. 

The WHO estimate that around 2.2 billion people worldwide suffer from some sort of vision impairment or blindness. That’s about 1 in every 3 and a half people on earth. It is easy to see how this technology could have a truly positive impact on the lives of countless real people. EPFL’s Diego Ghezzi has recently said that “from a purely technological perspective, we could do clinical trials tomorrow”. 

Kant Stop, Won’t Stop: Climate Action and the Categorical Imperative

Immanuel Kant was a German philosopher who is now famous for his concept of the ‘categorical imperative’. Similar to the ‘golden rule’ found in many religions (do unto others as you would have them do unto you), the categorical imperative works as a kind of handbook for determining whether an action is moral or immoral. The idea is that you should consider an action moral only if you could sensibly wish that all people in that situation would act in the same way. In other words, before you make a moral decision, you should ask yourself whether it would make sense for everyone to make the same decision.

This is known as the ‘test of universalisation’. If you can wish that a ‘maxim’ (a rule of conduct) be universalised, then that maxim is moral. If the universalisation of the maxim results in a logical inconsistency, however, that maxim should not be followed. This sounds like a complex idea, but once you start to analyse a few examples it becomes very clear. In this piece, I’ll be looking at some lifestyle decisions which are relevant to climate change through the lens of this rule to find out what Kant might have thought about climate action.

Consider the open-and-shut case of the maxim ‘I should kill people who irritate me in order to better society’. So what happens when this maxim is universalised? If everyone who was irritated resorted immediately to murder, society would break down. If irritation were a just cause for murder, I would’ve already killed several people today and I’m sure several people would’ve killed me. This is a society that is in no one’s best interests. More than that, it is the disintegration of society itself. The universalisation of the maxim ‘I should kill people who irritate me in order to better society’, then, is self-defeating, since it results in the breaking-down of the very thing it originally sought to improve; society.

Another example is that of lying. Kant thought that if everyone lied all the time, then truth itself would become meaningless. This generated what he thought of as a logical inconsistency. Usually people lie to gain some sort of advantage over the person they are lying to. If everyone lied all the time, that advantage would disappear and the reason you were lying in the first place would become null and void. A common criticism of Kant is that his rule is too strict and emotionless. People take the categorical imperative to mean that no one can lie at any time for any reason, since lying fails the test of universalisation. I think that this is a misinterpretation of Kant’s views. Consider this example:

Your friend knocks on your door, terrified. They tell you that a murderer is after them and ask for somewhere to hide. You agree. Sure enough, moments later a man wielding an axe shows up at the door and asks if you know where your friend is. People say that according to Kant, it is immoral to lie to the murderer because the categorical imperative forbids it and you must therefore tell the murderer where your friend is. I disagree with this interpretation. For me, the categorical imperative can be more specific than ‘should I lie’ or ‘should I kill’.

Consider the maxim ‘I should lie if it saves my friend’s life from a murderer’. I don’t think Kant would have any problem saying that a sensible person could wish that maxim to be a universal law. If everyone lied all the time, a logical inconsistency would be generated since truth would become meaningless. If everyone lied only to divert murderers from their victims, however, the only result would be a better world. Even if this interpretation misrepresents Kant’s actual views, I see no reason why this simple revision should not silence many of his critics.

Ok, now that we have a basic understanding of Kant’s idea, let’s try to apply it to climate action. Consider the maxim ‘I should drive to work every day’. Let’s universalise that. If everyone drove to work every day, the resulting emissions would have catastrophic consequences for the planet. Climate change would soon reach a tipping point and set off feedback loops that we would be powerless to halt. This would cause the economy to collapse, likely leading to the loss of your job.

As in the case of lying, the universalisation of this maxim defeats the purpose of what the maxim was trying to achieve in the first place. It is not helpful to get to work quickly and hassle-free if your job no longer exists. What’s more, if everyone drove every day then we would soon run out of petrol and then nobody would be able to drive to work at all. Those sound like logical inconsistencies to me.

What about ‘I should eat meat every day’? This falls into the same problem. If everyone ate meat every day, the resources and land required to supply all this meat would most likely exceed the resources and land available on planet earth. Already, one third of all ice-free land is used to raise livestock and we are nowhere near everyone eating meat every day. More than that, the methane emissions from the livestock would greatly accelerate climate change, leading to desertification of land and rising sea-levels, further reducing the land available to raise livestock. The ultimate effect of everyone eating meat every day is that it would quickly become impossible to eat meat every day, thus defeating the original purpose of the maxim.

I think you probably get the point but I’ll do another one anyway. What about the maxim ‘I should leave my lights on when I’m not in the room’? The net result of universalising this maxim is that the resources required to generate the electricity to keep that light on would quickly run out. In addition, the increase in the severity and frequency of natural disasters that would occur would greatly increase the chance that your home would be destroyed by a hurricane or flood, thus rendering your lightbulbs kaput. The effect of everyone leaving their lights on is that pretty soon no one will be able to turn their lights on at all.

You may be thinking at this point that universalising any maxim at all will lead to logical inconsistencies. Not true. If you go back and try to universalise the opposite maxim to the examples above, you will find that none result in such an inconsistency. I can wish that no one drives to work every day, since this would only result in cleaner air, less global warming and ultimately a better world.

Universalising the maxim ‘I should not drive to work every day’ is logically consistent, since the maxim can still be followed in the world brought about by the universalisation. In other words, in a world in which no one drives to work every day, it still makes perfect sense to say ‘I should not drive to work every day’. This does not mean that there can’t be exceptions made for people with disabilities or no other means of transport. As in the case of the murderer at the door, we can simply alter the maxim to be more specific. For example; ‘I should not drive to work every day if a viable alternative is available to me’.

What about the maxim ‘I should not eat meat every day’? If no one ate meat, the planet would be far better for it. We would increase the food available to us, since crop agriculture is far more efficient than animal agriculture when it comes to land and resource use. If you give 100 grams of protein to a cow, the meat that you get back will contain only 10 grams of protein, since the cow will use up the rest by walking, breathing and maintaining its body temperature. In a world in which no one eats meat, it still makes perfect sense to say ‘I should not eat meat’. There is no logical inconsistency there, since the universalisation of the maxim does not cause it to fall apart.

I won’t bother re-analysing the last example, since I’m sure you have the gist by now. I will, however, take this time to head-off an objection that I’m sure people will have. You may argue that it is not the actions of normal people which are causing global warming, but rather the actions of a select few who are producing emissions on an industrial scale. It is true that 70% of all emissions since the industrial revolution have been produced by just 100 companies, but this line of reasoning only gets you so far. Who do you think corporations are producing the emissions for?

Corporations only stand to profit from polluting the earth because we continue to pay them for it. To go back to Kant for a second, if everyone made a conscious effort to reduce their energy usage, then the companies who generate that electricity from fossil fuels would have no reason to continue ramping up their operation. It’s really very simple; supply and demand. So long as the demand for things like electricity and beef remains high, it is still profitable to burn as much fuel and raise as many cattle as you possibly can.

If the demand were to drop by, say, 50%, then the only way to keep the operation profitable is to reduce the supply by 50% too. This is because it is expensive to produce electricity and beef, and there is no financial incentive to make that initial investment if no one is willing to pay for the finished product. So while corporations carry the responsibility for producing the emissions, every individual in the western world has facilitated these crimes against humanity by providing a financial motivation for their continuation. It is for this reason that we cannot simply dismiss the impact of individual actions.

Anyway, my point here is that according to one of the greatest moral philosophers who ever lived, every action which contributes to or accelerates climate change should be considered immoral. To be clear, I am not saying that everyone who drives to work every day, eats meat or leaves their lights on is a terrible person. Necessity, cultural norms and misinformation have created a world in which climate-damaging actions are seen as morally-neutral standard practice. What I am saying is that given some reflection, those people should come to the conclusion that taking the bus, eating plants and turning the lights off would be better moral choices. No one is inherently good or bad. Our moral value is determined not by who we are, but rather by the thousands of tiny choices we make day to day.

People have a tendency to become defensive when it comes to their morality. They are not willing to accept that what they have been doing their whole lives was immoral, since the implication would be that they themselves are an immoral person. Consider the person who does and says blatantly racist things, but recoils in anger and disgust when they are accused of racism. The truth is that there is something wrong with the way we have been living our lives in recent decades, as evidenced by the fact that if we continue on our current path, life will become a daily struggle for survival before you can say ‘drive-thru cheeseburger’. What is needed now is for us to put our pride aside and accept that we fucked up, rather than retreating into a tortoise-shell of denial. Why? Because by the time we finally come out of our shells, it may be too late to change course.

Short Change: The Vampire in your Living Room

TVs, Printers, microwaves, chargers, DVD players, desktop computers and many other devices all drain energy when turned off or not in use. This drain is known as ‘vampire’ or ‘standby’ power and is responsible for a huge amount of energy loss each year. Since that energy is largely generated by burning fossil fuels, vampire power accelerates the rate of global warming as well as raising your electricity bill.

According to UC Berkeley, Americans lose 200-400 terawatt hours per year to vampire power; that’s enough electricity to power all of Italy! That is quite something, given that the US population is only about 5 times larger than that of Italy. Some investigations into vampire power have found that many appliances actually use more energy during the time when they are idle than they do when they are in use. One survey of office buildings in Thailand found that 90% of the electricity used by printers, copiers and fax machines was vampire power. In other words, it would cost 10 times less money and emissions to run these devices if they were simply unplugged when not in use. Another study found that 80% of electricity used by video recorders in Australia was used in standby mode.

So how can you identify an energy vampire? Unfortunately it is not as simple as throwing holy water at your devices. There are, however, some good rules of thumb. Anything that can be turned on with a remote control is likely an energy vampire, since the sensor which picks up the signal must remain on 24/7. Another likely culprit is any device, like microwaves or radios, which constantly displays the time on a screen. There are, however, many other devices which consume power when not in use but show no external signs of doing so.

This issue negatively affects both the bank accounts of the average consumer and the global effort to combat climate change. Compared to dismantling the fossil fuel industry or convincing everyone to stop eating meat, this is a relatively easy fix. One way to slay vampire power is on the side of the consumer. If you buy a couple of extension cords with on/off switches, you can easily cut power to things like TVs and printers when they are not in use. Try keeping your remote control beside the extension cord so that you can flip the switch when you go to pick it up. There is, however, only so much we can do.

The more promising solution to vampire power is technical and is the responsibility of electronics manufacturers. For example, energy-saving devices can be built which automatically cut power when not in use for a certain amount of time. Another example would be phone or laptop chargers which cut the power when the device is fully charged or unplugged. It is estimated that changes to the power circuits of devices could reduce vampire power by as much as 90%, so manufacturers have the power to largely fix this issue all by themselves. One problem with this is that consumers are more likely to buy, for example, a TV which can be turned on remotely, so manufacturers have an incentive to keep producing goods which drain power when not in use.

Cutting vampire power would allow us to supply many more people with electricity without a corresponding increase in CO2 emissions. Improvements in efficiency such as this will be necessary to fight climate change, but must occur in tandem with a number of other tactics, including a conscious effort to reduce energy consumption across the board. It is the responsibility of manufacturers and consumers alike (but mainly manufacturers) to be careful about how much power is being used, and to identify and eliminate any power drain which is not absolutely necessary.

A Salt and Battery: How to Store Sunlight

It has become common knowledge that humanity needs to change the sources of our energy at an unprecedented rate if we are to avoid the worst effects of climate change. Renewable energy systems are the most promising means available to reduce our impact on the earth without giving up the comforts of readily available electricity. However, an issue with some renewables like wind and solar is that the energy is only available sometimes. There is no solar power without sunlight and no wind power without wind. In this article I’ll be looking at a type of solar power plant which avoids this problem in a most ingenious way.

One way to solve the storage problem might be to connect all our renewable energy infrastructure to a massive international grid. What this would achieve is that excess solar power from a hot day in San Francisco could be used to power Beijing in the middle of the night, or excess wind power from blustery Ireland could be used to power gustless Brazil. This is a very good idea in theory but it has its drawbacks. Consider the sheer quantities of copper and rubber required to connect every solar and wind farm in the world to every home or business which requires their energy. And what about the time it would take for such an ambitious project to reach completion? Climate change is already here and will soon become entirely irreversible without swift and decisive action.  

So how else can we store and distribute renewable energy? The answer seems very simple; build a battery. If you need solar power at night, why not store the electricity generated during the day rather than transporting it to the other side of the world? This, however, is far easier said than done. The current generation of lead-acid (car) and lithium-ion (phone) batteries are remarkable works of engineering. They are not, however, up to the task of storing the amount of energy we need them to store without seriously depleting natural resources like rare-earth metals. We are badly in need of a breakthrough. Lead-acid batteries have been working on the same basic principle since their invention by Gaston Plante in 1859 and are still one of the most widely used rechargeable batteries on the market. In this article, I’ll be looking at a new way of storing solar power that may revolutionise the energy grid of the future.

‘Concentrating solar power’ (CSP) plants have been providing more and more people with electricity ever since they were first built on an industrial scale back in the 1980s. The difference between these solar plants and standard photovoltaic (PV) plants is the way in which the electricity is generated. In PV panels, solar energy is converted directly into electricity. In CSP, the heat energy from the sun is used to make steam which spins a turbine and this is what generates the electricity. This is roughly the same process used to generate power from coal, oil, natural gas, nuclear fission, incineration, plasma gasification and thermal wave power so the proof of concept is definitely there. The major advantage of CSP over PV is storage. If your plant is generating electricity directly from the sun, you need somewhere to store the electricity when it is not needed; a battery. If you are generating electricity from heat, on the other hand, you can store the sun’s energy in something called a heat transfer fluid (HTF). This is any fluid, like mineral oil, which retains heat well over time.

The most basic and widely used form of CSP is known as a ‘parabolic trough power plant’ (PTPP). The first documented use of this technology was Auguste Mouchout’s ‘solar steam engine’ in 1866. In PTPPs, mirrors focus sunlight onto tubes which contain a HTF. The mirrors are curved like those you might see in a house of fun and are arranged in troughs with the tubes of HTF running down the centre. Picture a hot dog but with mirrors rather than bread and tubes rather than a highly questionable meat-like substance. The hot HTF is transported through the tubes to a series of heat exchangers where it evaporates water to spin a steam turbine. If electricity is not needed at that moment, the hot HTF can instead be transported to a storage chamber from which it can be removed when the need arises for electricity. Once the heat has been converted into electricity, the HTF returns to the troughs to begin the process again. 97% of the CSP plants currently producing energy are PTPPs.

Parabolic mirror with tubes of HTF

PTPPs, however, are not the only type of CSP available. Back in 2011, a company called Solar Reserve received a loan of $737 million for a project called ‘Crescent Dunes’; a massive solar plant in the Nevada desert which can provide electricity to 75,000 homes, night and day. Crescent Dunes is what is known as a ‘power tower’ CSP plant. Power towers operate on the same basic principle as PTPPs, but rather than each mirror focusing sunlight onto a different section of tubing, all the sunlight is concentrated on one central tower. Focusing all the sunlight on one place means that the plant operates at much higher temperatures, greatly increasing efficiency. This design also does not require expensive curved mirrors like PTPPs. The plant instead uses ‘heliostats’, flat mirrors which track the sun and change their position to maximise the amount of sunlight hitting the tower.

The real genius of the project is what is contained within the tower. Inside the tower is a mixture of potassium nitrate and sodium nitrate; also known as salt! More specifically, saltpeter. Sodium nitrate is currently used to preserve certain foods and is the reason bacon goes green if left uneaten for too long. In power towers, the salt is heated by the sunlight reflected off the mirrors until it is molten and packed to the brim with energy. The salt is cheap and extremely good at retaining heat, acting as a kind of thermal battery. This means that power towers can continue to provide energy long after the sun has stopped shining. What’s more, salt can be used at much higher temperatures than any of its competitors. One issue with using molten salt is that it can freeze in the pipes. For this reason, new types of solar salt are being developed which have much lower melting points.

One apparent issue with this design is the effect on birds. If you have thousands of mirrors concentrating the blazing sunlight of the desert into one spot, any bird that is unfortunate enough to fly through the firing line could be killed by direct heat. There have even been reports of birds bursting into flames mid-air then crashing down to earth like meteorites. We have decimated insect populations around the world, depriving many birds of their food source, and scientists estimate that between 100 million and 1 billion birds die each year by flying into buildings in the US alone. Given these facts, it could be argued that bird deaths are an unacceptable side-effect of power towers However, recent studies of bird deaths in a number of power towers have shown that initial estimates may have been wildly exaggerated.

Back in 2014, a conservationist by the name of Shawn Smallwood very roughly estimated that Ivanpah, the world’s largest CSP plant, could be killing 28,380 birds per year. That number or anything close to it would indeed be unacceptable. However, at the same time that Smallwood made his estimate, a large-scale study was being carried out at the Ivanpah plant to see just how many birds were actually dying. After 8,935 person hours and 281 dog-hours of searching, the team found just 695 dead birds and 35 dead bats. Adjusting for the bodies that weren’t found or were carried off by scavengers, the team estimated that around 3,500 birds had died in the plant’s grounds over the course of the year. They estimated that only around 1,500 of those deaths were caused by birds flying into the tower or being burned by the mirrors. That’s nearly twenty times fewer deaths than the number predicted by Smallwood which tarnished the plant’s name in the media. The other 2,000 deaths were listed as ‘unknown causes’ which could have nothing to do with the power plant at all. To put these numbers in context, it is estimated that in the US alone, domestic cats kill 1.3 to 4 billion birds per year.

Another consideration is that the negative effects suffered by birds if climate change goes unchecked greatly outweigh the effects they will suffer from concentrated solar, particularly given the recent assessments which show that the damage to bird populations from CSP is far less severe than was previously thought. There is certainly merit to this argument. We need to develop and roll out effective energy alternatives very soon or else birds, mammals, fish and insects alike will all suffer the worst effects of climate change.

It seems that CSP plants are getting better and better at mitigating the risk to bird populations. Each year the number of deaths goes down as adjustments are made to what is still a very new technology. It may seem cold and calculated to talk of flaming birds like mere teething pains, but we need to make these kinds of hard decisions if we are to ensure that we leave a habitable planet to future generations of people and birds alike.  

In PTPPs, the sunlight is concentrated on a massive number of different points which are at ground level, meaning that the threat to birds is greatly reduced. However, there are a number of drawbacks. First and perhaps most important is that power towers are far more efficient at converting heat into electricity. This is partly due to the higher operating temperatures but is also affected by the surface area on which heat-loss can occur. If you concentrate all the sunlight onto one point, there is a much smaller area in which heat can radiate out into the atmosphere. Another major factor is how much of resources like oil, metal, water or salt are required for the process. In power towers, you only need enough HTF at any given moment to fill the relatively small space at the top of the tower. If you are constantly heating several kilometres of pipes, on the other hand, you will lose a lot more heat to radiation and use a lot more resources in the process.

Like many sustainable technologies, there are a number of advantages and disadvantages to CSP. When it comes to large-scale energy production, CSP seems to have PV beat, but If you are just looking to power your own house, PV rooftop solar panels are far easier to install and provide you with a personal energy supply. In the US, you can also make money from producing excess energy for the grid, with the UK set to follow suit in January of 2020 after much controversy and tomfoolery on the part of the government. Right now, good PV panels convert roughly 20% of sunlight into electricity but researchers think that number could theoretically be brought as high as 80% with a few breakthroughs. When it comes to deciding which type of CSP is best, I will leave that up to you.

Power towers are far more efficient and require far fewer resources to generate the same amount of energy. Despite initial exaggerations, however, power towers do pose a threat to birds, particularly if new plants keep being built. What’s more, they do not have a proven track record as long as their rival. What is certain is that if we do not transition to cleaner forms of energy ASAP, the consequences will be far more severe than most people think.

We will see an acceleration of biodiversity loss and an increase in the frequency and severity of natural disasters like hurricanes and floods. Large areas of land will become inarable, greatly reducing our food supply, and hundreds of millions of people will be exposed to extended periods of drought. Depending on which predictions are correct, the emissions reductions brought about by technologies like CSP could easily end up saving more lives than were lost to the holocaust. If that is not worth investing in, then I truly don’t know what is.

Money for Nothing: The Advantages of Universal Basic Income

The idea that we could pay everyone enough money to live on with no strings attached has been around for hundreds of years. With income inequality and job automation on the rise in recent years, however, the idea has started to make more and more sense.

UBI and Income Inequality

Universal Basic Income (UBI) means that each person is paid (by the government) enough money that they can afford food, shelter and even a carefully budgeted social life without the need for work. The extremely poor would be paid exactly the same weekly wage as the extremely rich. Where would this money come from? A tax on the obscenely rich of course. A 40% tax on Jeff Bezos’ wealth would yield around 61 billion USD, leaving him with a measly $91 billion for himself. The $61 billion that comes from taxing one man could be used to pay someone else $500 dollars a week for 2 million, 346 thousand, 153 years. That’s nearly 12 times longer than our species (homo sapiens) have existed.

Bezos himself would be left with more money than it is possible to spend in a lifetime, even living the most extravagant of lives. What’s more, he would continue to generate huge quantities of wealth through both the profits of Amazon and the monumental interest which accrues when one has $91 billion in one’s pocket. This is not necessarily how UBI would work in practice. Rather than a wealth tax, the money could instead come from taxing the income of the extremely rich. This avoids the problem of trying to tax assets like property and warehouse robots, but the drawback is that it is easier for billionaires to hide their income than it is for them to hide their robots.

Incidentally, working 24/7 with no breaks at the US minimum wage of $7.25 per hour, it would take 2 million, 393 thousand, 324 years to make as much money as Jeff Bezos currently owns. That is also roughly 12 times as long as sapiens have been around (aren’t numbers fun?). The question these figures pose for me is this: What could Jeff Bezos possibly have done in his life that is of equal value to 2 and a half million years of minimum wage work?

The way the system is currently set up necessitates that the rich get richer and the poor stay poor. People working on minimum wage make just enough to get by, leaving them with basically no possibility of saving or investing in education. The super-rich, on the other hand, are actually paid just for being rich (in the form of interest). People who are struggling to make ends meet may be forced to borrow money from the very rich. These loans accrue interest, meaning that the net effect is that money is taken away from the economically disadvantaged people who need the loan and funneled upwards into the bank accounts of the people who could afford to give the loan. These factors, along with automation of jobs and a few others, are why income inequality has been rising and rising and showing no sign of slowing down. Taxing the rich and using the money for UBI would go a long way towards closing that gap.

Many researchers have drawn a negative correlation between income inequality and self-reported happiness. This makes sense in terms of both the numbers and the philosophy. Of course people in more equal societies are happier. Every country has a finite amount of resources, and how fairly those resources are distributed determines how many people are struggling to put food on the table and how many people can comfortably provide for themselves and those who depend on them. Given the link between happiness and inequality, it follows that a system such as UBI which dramatically decreases inequality would also lead to a dramatic increase in happiness.

UBI and Employment

These days, when someone is called a ‘Luddite’, it is typically used to mean that they are opposed to the progress of technology. An example would be someone who refuses to buy a smartphone. However, the word originally referred to a revolutionary group who were active more than 200 years ago. The Luddites were weavers who were famous for smashing spinning jennies, machines that threatened to put them out of work, but they were not necessarily opposed to technology as many people believe. Instead, they were opposed to the obscenely rich upper class who owned the spinning jennies, from which the workers reaped no benefit. Spinning Jennies were not new technology, in fact they were invented 50 years before the first Luddite ever smashed one.

The problem was that when something was woven by hand, the weaver could receive the majority of the profits, whereas if it was woven by a spinning jenny, the majority of the profits would go to whichever wealthy man owned the machine. The Luddites were early trade union activists who protested unfair wages by destroying their employer’s revenue-generating property. This problem has only gotten worse since the protests began in 1811. Many people, like fast food workers or cashiers, make a living by operating machines which belong to extremely rich CEOs who have very little indeed to do with the actual production process. Amazon currently have 45,000 robots operating in its warehouses, generating revenue but paying no tax. A barely related but nonetheless interesting side note is that Amazon’s warehouse robots have accidentally opened multiple cannisters of bear repellent in the last few years, leading to the hospitalisation of dozens of employees.  

About 50% of workers are predicted to lose their jobs to machines by 2050. The number of jobs that are beyond the reach of automation has been shrinking ever since the Luddites banjaxed their first jenny, and the rate at which they are disappearing has become more and more rapid with the passing of time. Before anyone thought to use a dummy, the job of scarecrow was carried out by children, who were paid one penny and a swede for their troubles. For me, it makes perfect sense that jobs like this were lost to time. That is why we build technology; to reduce the amount of work we need to do ourselves. Often the jobs that are taken by machines are ones that we only do because we need the money, not because we find them fulfilling or meaningful. With UBI, we could leave those jobs to technology and focus instead on projects which make the world a better place.

The main issue here, for me, is not that jobs are lost to technology. New jobs are constantly being created to meet new demands. While human scarecrows have gone the way of the dodo, uber drivers and dogwalkers have popped up in their stead. That’s evolution baby. The priority should not be to desperately cling to jobs that we no longer need or want (like coal mining or weapons manufacturing) but rather to provide adequate training to the people doing these jobs so that they may transition to ones which are more useful to society (like building renewable energy infrastructure or vertical farming).

People do not do jobs which harm society because they want to. They do them because it is necessary to put food on the table. By providing food and shelter to everyone, we mitigate the external pressure to work jobs which harm society and encourage people to focus their attention instead on what gives their lives meaning or makes them happy. What they choose to do will be more likely to be in the best interest of society than what they are currently forced to do to survive in a broken system.

Another way that UBI could benefit society is by massively streamlining the welfare process. Right now, huge numbers of people are employed to sign people up to welfare, make sure that people are looking for work and carry out the administration and bureaucracy involved in a system which requires people to prove beyond a reasonable doubt that they are starving before it will give them something to eat. These administration jobs could largely be done away with under UBI, since welfare would be replaced by the very simple process of giving everyone exactly the same amount of money regardless of their situation. The money we pay to welfare officers and administrators could be used to help fund UBI, and the people who are doing these jobs would be freed up to pursue more fulfilling goals. Hell, one of them may be the next Jimi Hendrix but they never had the time or resources to pick up a guitar before.

What about the claim that if everyone is paid to do nothing, then no one will do anything? This, in my view, is simply false. People have an innate drive to make something of themselves. I doubt you would last more than a week doing absolutely nothing before you decided to get up out of bed and make your name mean something. In addition, UBI does not mean that there is no reason to get a paying job. Your weekly wage as an unemployed person would be enough to live on, yes, but it would not be enough for a particularly comfortable life. Most people would still work a few days a week to make money for holidays, luxury items and projects which enrich their lives. This idea is supported by preliminary evidence from the most complete pilot study ever carried out in relation to UBI.

From 2017-2018, 2,000 people were randomly selected in Finland to receive €560 per month with no strings attached. Researchers then compared those who participated in the study to a control group of 173,000 people with respect to several factors including employment rates and life satisfaction. For all of 2017, the test group earned, on average, just €21 less than the control group from employment. This extremely small difference tentatively suggests that UBI will not lead to a significant reduction in employment, if any. The difference in trust and life satisfaction between the two groups, however, was far more significant. Basic income recipients reported much higher levels of trust in other people, the legal system and politicians. They also reported much higher confidence in their future, financial situation and ability to influence societal matters. In addition, 54.8% of basic income recipients self-assessed their health as being ‘good’ or ‘very good’, compared to just 46.2% of the control group. The study only ended in December of 2018, so the full report has not yet been released, but the preliminary evidence suggests that under a UBI system, employment rates would stay about the same, whereas happiness, trust and health would benefit hugely. The full report is scheduled for release at the end of 2019.

UBI and Society

To say that UBI is unrealistic because the rich will not allow it to happen is to succumb to a form of brainwashing. There, I said it. There are more of us than there are of them, and yet somehow they have convinced us that they will always have all the money and we will always have none. The most important tool in their arsenal is your belief that they are too powerful to oppose. By arguing that they will not allow it to happen and therefore we should not even try, you are playing right into their hands. If you think that UBI would be good for society (as I do) then you should fight to make it happen. I am not saying that we will not come up against any resistance from the financial elite. We very much will. What I am saying is that one of the ways in which they have resisted change already is by convincing you that they are so firmly in control that nothing can be done.

UBI would give us the freedom to do what we want to do with our lives. It would provide the foundation for an equal society, in which those who were born with nothing can make something of themselves and those who were born with everything get a smaller slice of the global pie. The Luddites thought that it was unfair that people who had inherited enough money to buy spinning jennies were taking all the profits while the people working their fingers to the bone operating those machines were making a pittance. I wholeheartedly agree. The private ownership of revenue-generating technology like tills, deep-fat-fryers and warehouse robots has been a significant factor in the long-term trend toward a top-heavy and unjust society in which some people have mansions to themselves while others share tiny flats or worse, sleep on cold and unforgiving streets.

Automation, inheritance, interest, loans, tax loopholes and unfair wages have created a society in which some people have everything and everyone else has nothing. There are things we can do to alleviate this problem like raising the minimum wage or corporate tax, but none do more to solve the problem than UBI. The disadvantaged majority have always fought for equality and the advantaged minority have always resisted to maintain their advantage. Enough is enough. We are more connected now than ever before in human history, making it easier than ever before to organise ourselves against those in power. We need to elect people who are not afraid to push back against corporations and sign into law measures that will help the 99% and hurt the 1%. For too long the discourse has been controlled by people who benefit from things staying exactly as they are. The new generation has shown time and time again that we want change and it is only a matter of time before that wish is granted. Do not believe for one second that they have all the power. If we do that, they have won. We have the power. We can force change.

Gas in the Tank: How Methane could be the Future of Fuel

Almost all the talk of climate change in the media focuses on CO2, as it is the most abundant greenhouse gas (GHG) on earth. It is not, however, the most potent. Not by a long shot. Over a 20-year period, methane is around 86 times more effective at trapping heat than CO2. This is worrying since humans have caused, in just 300 years, an increase in global methane from 715 parts per billion to 1774 parts per billion, the highest level in 650,000 years. That works out to about a fifth of all global warming, making methane the second most significant GHG on earth. Roughly 60% of all atmospheric methane is the result of human practices like large-scale animal agriculture and poorly-managed landfills.

Before I get going, I would like to acknowledge the paper “Biotechnological conversion of methane to methanol: evaluation of progress and potential” as it proved to be an extremely useful research source on this topic.

New research has shown that it may be possible for us to convert methane into fuel cheaply, quickly and on a large scale. The key to this energy revolution will be exploiting a type of bacteria known as methanotrophs. Methanotrophs are incredibly abundant in nature. They account for 8% of all heterotrophs on earth (organisms like us that have to ‘eat’ rather than photosynthesising their food). Methanotrophs were first identified way back in 1906 but in the 1970s, 100 types were isolated, characterised and compared in a landmark study. These incredible bacteria are capable of converting methane into methanol very easily, a process that has been referred to as the holy grail of modern chemistry. If we could perform this conversion as easily as methanotrophs, we could seriously cut down our GHG emissions.

In May of 2019, researchers at Northwestern University identified the cofactor involved in catalysing the conversion of methane to methanol, providing a huge step forward in our understanding of how methanotrophs carry out this incredible process. Methanotrophs are known to carry out the conversion using an enzyme called methane monooxygenase (MMO), but the researchers have now identified the copper ion which accelerates this process and the site at which that copper ion is bound.

Methanol is an energy-rich fuel that can be used for everything from automobiles to electricity generation. In fact, methanol can be put straight into a standard internal combustion engine, meaning that we would not need to design new types of engines in order to make the switch. Burning methanol in an engine produces 20-25% less GHGs than burning petrol, but even these emissions are cancelled out by the fact that methane is removed from the atmosphere to produce the fuel. In other words, it’s already better than burning petrol, and the fact that it removes methane makes it better still. Remember, methane is far more potent than CO2 as a GHG. By converting methane to methanol then using the methanol as fuel, you are essentially converting methane to CO2, which causes much less global warming. The conversion happens at a ratio of 1:1, meaning that simply converting methane to CO2 would result in a serious decline in GHGs in the short term. In addition, the energy you get from burning the methanol means that you don’t have to burn as many fossil fuels, further lowering the carbon footprint of the process.

Right now, we are able to convert methane to methanol. In fact, we have been doing this on a relatively large scale for quite some time now. In 2015, the global demand for methanol was 70 megatons. The difference between current methods of converting methane to methanol and using methanotrophs instead is the temperature and pressure under which the reaction can be carried out. Current methods require temperatures of 900 degrees Celsius and pressures of 3 megapascals. In other words, that is roughly the same temperature as lava and roughly the same pressure that is exerted on a submarine 1,000 feet below the sea. Methanotrophs can perform the same conversion at room temperature and atmospheric pressure (the normal pressure at sea-level). This is known as ‘ambient conditions’ and describes the temperature and pressure wherever you are reading this article (provided you are not reading this in a volcano or a submarine).

The problem with needing extremely high temperature and pressure to perform the reaction is that it requires a lot of energy, cancelling out many of the gains made with respect to GHG emissions. That energy needs to come from somewhere and 9 times out of 10 that somewhere is fossil fuels. In addition to this, the process is currently too expensive to be economically viable, a factor that hugely influences whether or not a technology enters the mainstream. If we can harness methanotrophs’ ability to convert methane to methanol at ambient temperature and pressure, the process will become far cheaper, far quicker and far more environmentally friendly.

There is an important distinction to be made between low affinity and high affinity methanotrophs. Low affinity methanotrophs are found only where there are high concentrations of methane (more than 40 parts per million). So far, every strain of methanotroph we have isolated has been low affinity. High affinity methanotrophs, on the other hand, can perform the conversion at ambient levels of methane (less than 2 parts per million). Isolating and exploiting high affinity methanotrophs is the real holy grail, since this would allow us to convert the methane in the air all around us into fuel rather than just being able to perform the conversion in places where concentrations of methane are high.

Another way this process might reduce GHGs is by creating an incentive for oil companies to stop ‘flaring’ natural gas when exploring for oil. As you bring the oil to the surface, natural gas comes with it. To prevent pressure building up in the pipes, the gas is burned (which is why you sometimes see oil wells with flames shooting out the top). 4% of all natural gas which is extracted worldwide is flared. Using 2017 figures, that works out to 139 billion cubic meters of gas wasted every year (nearly 1 and a half trillion Kwh). That is slightly more energy than is used each year in India, a country with nearly one and a half billion people. Since natural gas is around 85% methane, development of cheap methane-methanol conversion techniques would provide an incentive to capture and store the gas rather than burning it unnecessarily and releasing huge amounts of GHGs into the atmosphere in the process. This is an example of how we can use our current knowledge of low-affinity methanotrophs to begin cutting down on emissions.

Transporting methane is currently very difficult, since it is a gas under ambient conditions. Liquids take up far less space than gases and are also far more energy-dense. By converting methane to methanol, we seriously boost how much potential energy can be carried by a single truck. By cutting down on how many trips are required to transport the same amount of energy, we also cut down on the fuel required for transportation. Efficiency gains such as this will be vital in our transition to a sustainable society if we wish to retain our current levels of comfort.

Burning methanol is also far cleaner than burning petrol, releasing half the carbon monoxide and just 1 eighth of the nitrous oxide. Over a 100-year period, nitrous oxide has a global warming potential 265-298 times greater than CO2. The reason you don’t hear as much about it in the media is that we release far less nitrous oxide into the atmosphere than we do CO2 or methane. The problem of climate change is so huge and so urgent, however, that we need to look at ways to reduce every GHG all at once by whatever means possible. An eightfold reduction in nitrous oxide from transport would go a long way.

One possible issue with this technology is that methane is only more potent than CO2 in the short term (a century or two). It could be argued that since CO2 stays in the atmosphere for thousands of years, we are simply pushing the problem back without solving it. To this I would reply that we are dangerously close right now to setting off feedback loops which would take climate change out of our hands and make the problem unsolvable. By procrastinating on this massive issue, we give ourselves time to develop technologies that can capture CO2 on a large scale as well as technologies that can provide us with clean energy. In other words, we are in desperate need of a band-aid.

Another objection might be that the process provides a financial incentive to keep fracking for natural gas when really we need to be leaving it in the ground. This objection, I think, holds more water. While burning methanol is more environmentally friendly than simply burning the natural gas, it is less environmentally friendly than not burning it at all. One way to respond to this is by arguing that it is naïve to think that we will stop extracting natural gas and oil any time soon. Global energy demand is huge and rising and these needs must be met somehow. It is better to meet them using efficient new technologies than to continue the practices that got us into this mess in the first place. In addition, if we can develop this technology to the point where we can remove atmospheric methane rather than just converting natural gas to liquid, it could actually result in negative emissions, meaning that we would be simultaneously meeting our energy needs and reducing our impact on the environment. The potential for this technology is massive.

Conversion of methane to methanol under ambient conditions and on a large scale would be a huge step forward in developing the green energy infrastructure that is required if we are to transition to a low-carbon world. I’ve said it so many times before, but it bears repeating that if we don’t make this transition very soon, the consequences will be extremely severe for humans and other animals around the globe. We are talking about a worldwide shortage of food and water, an increase in the frequency and severity of natural disasters, rising sea-levels and much more.

Climate change is happening right now all around us, from the wildfires of California to the hurricanes of Puerto Rico. How we respond in the coming years determines whether this will be a difficult century on one hand, or a complete transformation of the Earth that could last for hundreds of thousands of years on the other. So long as we can limit warming to below the levels required to trigger feedback loops, I have faith that humans can ride out the storm relatively unscathed. It is worth remembering, however, that this is the greatest challenge our species has ever undertaken. This is why the development of technologies like methane to methanol conversion is so critical and so time-sensitive. This tech will not solve the problem all by itself, but it will give us some time and breathing room to overcome the larger issue.

Shock Wave: Electricity From The Ocean

First published in UCD College Tribune

Even in this futuristic world of ours, all our electricity is generated by simply spinning a turbine. The fossil fuels which are bringing us ever closer to a complete climate catastrophe are not just used to power our cars, but also to create steam which generates the electricity needed for everything from phones to lightbulbs. This is exactly the same principle employed by nuclear power plants. In both cases, fuel is used to create heat, which is used to generate electricity. There are ways, however, to generate electricity which do not require heat at all. Some renewable technologies harness the vast mechanical power available from a planet that is in constant motion. Wave power generators (WPGs) are a possible energy source of the future, but how do they compare with their rivals?

It is worth quickly comparing ocean energy and wind energy since the two are similar in a number of ways. This is why underwater turbines closely resemble those of wind farms. A major difference between the two is the potential energy contained within. Water is nearly 800 times denser than air, meaning that the same volume, travelling at the same speed, contains much more power. What this means on the practical side is that much smaller devices can produce the same yield of energy.

A major difference between WPGs and tidal power is the source of energy. Tides result from the gravitational pull of the moon dragging water up and down our shores as it passes by above us. WPGs, alternatively, find their energy source in the sun. Solar radiation does not heat the earth evenly. The air in places which receive more heat rises upwards, allowing colder air to rush in to take its place. That rushing of air is what we call wind. Since wind is the driving force behind waves, any energy that we harvest from waves comes indirectly from the heat of the sun. It is for this reason that WPGs are considered a renewable technology.

Tidal power is perhaps the most reliable source of energy on earth. Twice a day like clockwork, unimaginably vast quantities of water rush in and out of our coasts. Globally, there is as much power available from tides alone as there would be from nearly 5 and a half billion coal-burning plants. One of the problems, however, is that only a very small fraction of this energy could actually be harvested. There are only 40 or so places in the world where the difference between low and high tide is great enough to produce a worthwhile amount of power. One way that the power of the tides can be harnessed in such places is by building tidal ‘barrages’. These consist of huge dams which trap water from the rising tide, then release it slowly when the tide is low. As the water passes through the dam back into the sea, it spins a series of turbines to generate electricity.

WPGs come in a variety of forms. One very cool design that was deployed in the ocean as far back as 2004 resembles a giant sea-snake. Each segment of the snake is attached to the next by hinge joints which are connected to hydraulic rams. As the sections of the snake move back and forth over the waves, the hydraulic rams drive a series of electrical generators.

Another simple yet ingenious way of harnessing the power of waves is by using a device known as an oscillating water column (OWC). These machines consist of a hollow cylinder containing a turbine which is attached to a buoy. As the waves pass by underneath, air is forced up through the cylinder, spinning a turbine. What makes these devices truly remarkable is the special kind of turbine contained within. The so-called ‘Well’s Turbine’ is shaped in such a way that it can generate electricity regardless of which way the air is flowing. This means that power can be harnessed when the device is rising to the crest of a wave and also when it is falling to a trough, doubling the overall efficiency.

The final method for generating electricity from the ocean is called ocean thermal energy conversion (OTEC). This is another way we can indirectly generate solar energy using the ocean as a middle man. The way OTEC works is that a liquid with a low boiling point (like ammonia) is evaporated by the warm surface water of the ocean and expands, spinning a turbine. The ammonia vapour is then condensed using cold seawater and returned to the evaporation chamber to start the process over again.  The technology required for this method is simple and rapidly improving, meaning that OTEC is very much one to watch out for in the coming years.

So, which is better, WPGs or tidal barrages? WPGs hold greater promise in my view, largely because tidal barrages can be devastating to already strained marine ecosystems. Think about it; much of the ocean’s life is concentrated close to the shore. As the tide rises, both water and marine life can pass freely through the dam. Once that waterway is shut, however, the only way back to the sea is through a series of rotating blades. Many barrages are built on estuaries where rivers meet the sea. By preventing free movement through these estuaries, barrages can also seriously disrupt the spawning patterns of fish like salmon. WPGs, floating on the surface in open water, are much easier to build in a way that’s hospitable to marine life.

This is of vital importance; through plastic pollution, overfishing and ghost fishing, we have already utterly decimated almost all marine life. With plastic pollution and ocean acidification set to get much worse, we simply cannot afford to do any more harm to the beautiful animals that reside beneath the waves. If a plan is to be truly environmentally friendly, it must consider not only the CO2 it will emit, but also the effects it will have on our fellow animals. It is this major issue, coupled with the location problem mentioned earlier, which means that WPGs hold more promise than tidal barrages. In any case, it is clear that as both the financial and environmental costs of fossil fuels rise in the coming decades, blue power will assume an increasingly important position in the global energy industry.

Lawn of the Dead: How Cutting your Grass Affects Wildlife

Why do we cut our grass? The short answer is that we think it makes our gardens look neat and respectable. What would the neighbours think if our grass was long and full of weeds? What this kind of thinking fails to consider is the massive toll that lawn mowers have on local wildlife. All ecosystems are fragile and vulnerable to devastating chain reactions. By reducing the diversity of the plants on your lawn, you greatly reduce the hospitability of that environment for insects like bees, beetles and butterflies. This, in turn, has an effect on the food supply available to birds and small mammals. Some animals like mice and hedgehogs are often killed directly by the blades of mowers. On top of all this, most of us cut the grass with either petrol-powered or electric mowers, both of which hasten and intensify climate change, the greatest threat currently facing people and animals alike.

Humans have an obsession with shaping and controlling the world around us. Vast tracts of land are occupied either by our urban environments, crops or livestock. In the suburbs of our cities lie hundreds of millions of houses, with hundreds of millions of gardens. The reason gardens are so ubiquitous is that we psychologically require some part of our artificial environment to at least resemble nature. That is also why the paintings we hang on our walls often depict natural landscapes. While grass that is cut every week or two resembles nature, it is by no means natural. The hormones which suppress horizontal growth are in the tips of each blade of grass, which means that frequent cutting eventually creates a dense carpet which is impenetrable to anything but the grass.

To a bee, the difference between a well-cut lawn and a natural meadow is like the difference between a desert and a buffet. Global insect populations have been crippled in recent years by a combination of pesticides, herbicides, habitat loss and overactive lawnmowers. A 2017 study found that the number of flying insects in Germany has dropped by more than 75% in less than 30 years. Though you may think they’re creepy and unnecessary, insects serve a vital role in almost all ecosystems. Just like any other chain, if you break one link in a food chain, the whole thing becomes useless. The issue is not just the food supply of other animals, but also that some insects serve a critical function as pollinators. Three quarters of the world’s flowering plants and a third of all food crops depend on pollinators for their survival.  

Plants really are the bedrock of all ecosystems. Animals have no way of converting the energy of the sun into energy that we can use to do things like move and breathe, so we rely on photosynthesising plants for all of our nutrients. Even if you eat a lot of meat, poultry and fish, it’s important to remember that those animals only survived their first day on earth because of the nutrition they got from plants. Whether it is corn-fed chicken or grass-fed beef, we owe everything we eat to plants. Without pollinators like bees, many plants are left with no way to reproduce and, thus, no way to survive.

Petrol-powered lawnmowers are not regulated in the same way that petrol-powered vehicles are. The U.S Environmental Protection Agency (EPA) estimates that each petrol-powered lawnmower produces as much air pollution per year as 43 new automobiles being driven 12,000 miles each. If you’re thinking that this section doesn’t apply to you since you have an electric mower, it is important to remember that the electricity required to power your mower comes from a power plant that most likely used fossil fuels to generate the electricity.

If it is a choice between the two, however, electric mowers are the much greener choice. The emissions are more controlled and you do not need to use fossil fuels to transport the petrol all the way from a refinery to your back garden. In addition to this, the EPA estimate that 17 million gallons of petrol are spilled on lawns each year by Americans refuelling their lawnmowers. That is 6 million gallons more than was spilled in the infamous Exxon Valdez oil spill in 1989. Manual mowers which are powered by the elbow-grease of the user are both cheaper and better for the environment than either of the other kinds. If you are not able to push a manual mower for that long, solar-powered models are also available.

Lawn mowers are expensive. The fuel or electricity which powers them is expensive. On top of that, the actual process of cutting the grass requires time and effort and is widely considered to be a chore. A 2008 poll found that 58% of Americans surveyed said that they disliked cutting their grass. Ian Graber-Stiehl, in an article for Earther, claims that Americans spend between 47.8 and 82 billion dollars per year on lawncare and landscaping, compared to the 49.4 billion dollars they spend on foreign aid. Like smokers or alcoholics, we are paying through the nose to shoot ourselves in the foot. And for what? So that the neighbours don’t look down on us? My personal view is that if having long grass causes someone to lose respect for you, then that person’s respect is something you can do without.

For me, the important question to consider here is whether the benefits of cutting the grass outweigh the costs. I would argue that the answer to this question is a definitive no. The list of cons includes the killing of wildlife, contribution to climate change, high costs, noise pollution, air pollution and the fact that most of us hate doing it. The only real pro is that cut grass looks better, but even that is a matter of taste.

Personally, I think that a natural garden, with all its colour and movement, looks far more appealing than a still and monotonous carpet of green. It is important to point out that this is not an all-or-nothing situation. If you don’t want to abandon your mower altogether, you can still allow a neat patch of grass to grow long or mow a path to a small clearing where you can immerse yourself in the wild beauty that will surround you.

We need to change the perspective on this. We should not look down on people with long grass, quite the opposite! Those people are the ones who are helping their local environment by providing food and shelter for wildlife and cutting down on their carbon emissions in the process. In the age of anthropogenic climate change and mass extinction, the aesthetic appeal of our gardens needs to be lower on our list of priorities than helping animals to thrive.

We have brought the natural world to its knees in so many ways. The continued existence of every species on earth needs to be our top priority, not because they cannot take care of themselves, but because we are the ones who have endangered them. We have a responsibility to fix what we have broken and not only does leaving your grass to grow achieve that goal, it also saves you money and reduces greenhouse gas emissions. It is not often that you find a free way to help the environment, let alone one which will save you both money and effort. This is one of the rare win-win ways in which we can help our fellow inhabitants of earth get back on track.

3 Things You Should Really Know about Climate Change

In recent years, study after study have confirmed our worst fears about climate change and the window for effective action is rapidly closing. Many people now find themselves scrambling to come to terms with the complexities of climate change. Here are 3 things you should know:

The Snowball Effect

One of the scariest things about climate change is that as it gets worse, new mechanisms are triggered which contribute to and accelerate the problem. Such mechanisms are called ‘positive feedback loops’. The most obvious and dangerous example of a feedback loop is the melting of the polar ice caps. Both land and the ocean are darker in colour than white ice. Since darker shades absorb more heat from the sun, the loss of reflective white ice causes the land, ocean and atmosphere to warm at an accelerated rate. As more ice melts, the earth gets hotter. As the earth gets hotter, more ice melts and a vicious circle is born.

Perhaps scarier is that the permafrost (soil or rock that has been frozen for more than 2 years) currently contains twice as much carbon as there is in the atmosphere. Permafrost is what is known as a ‘carbon sink‘ since it traps huge amounts of greenhouse gases (GHGs) that would otherwise be warming the planet. While there is plenty of CO2 in the permafrost, there is also an abundance of methane, a GHG that is 20 to 30 times more efficient than CO2 at reflecting heat back towards the earth over a 100 year period. Another positive feedback loop is that of forest fires. Each tree that burns releases all the carbon it has taken in over its lifetime and darkens the area where it stood, allowing for more heat absorption. Less trees means higher temperatures which means more fires and more fires means less trees.

Along with ice and trees, soil is another major carbon sink. Recent studies suggest that as the earth heats, microbial activity in soil causes the carbon that has been accumulating over millennia to be released into the atmosphere. Each year, the burning of fossil fuels releases about 10 billion tons of CO2 into the atmosphere. 3,500 billion tons are trapped in the soil. If the earth gets hot enough that significant amounts of this carbon are released into the atmosphere, the consequences will be dire for all life on earth.

Yet another example of a carbon sink that may turn into a carbon source is the ocean. The ocean is currently the largest carbon sink on the planet, having already absorbed half of all the carbon we have released since the industrial revolution. However, the warmer the water is, the less CO2 it is able to hold. In addition to this, water vapour is a greenhouse gas and climate change is sure to bring a huge increase in ocean evaporation. However, this particular issue is not as dire as it seems.

The problem of ocean evaporation has something that is rare when talking about climate; a silver lining. More water vapour in the atmosphere means more clouds which block incoming solar radiation. This is a negative feedback loop which could help to regulate the temperature of the earth. The more water that evaporates from the ocean, the more clouds there are to block the sun’s rays and hopefully help to cool the planet. Research has shown that the reflective properties of the extra cloud cover should actually cool the earth, despite water vapour being a GHG.

Feedback loops illustrate how fragile our climate really is. Given their existence, releasing greenhouse gases into the atmosphere is like poking a tiger in the eye. Because of feedback loops, relatively low emissions can have far greater consequences than they otherwise would. It is imperative that we cut our own emissions as dramatically and quickly as possible if we are to avoid setting off these chain reactions that would surely alter the conditions of our planet for millennia to come.

Going Veggie Makes a Difference

Animal agriculture is the second largest source of greenhouse gases after energy production. There is much talk of reducing greenhouse gases by taking the bus or by refusing to fly, but animal agriculture produces more greenhouse gases than all modes of transport combined. Not too long ago on an evolutionary scale, humans accounted for 1% of the earth’s mammals, with the other 99% being wild animals. Now, humans and our livestock make up a staggering 96% of all mammal biomass on earth.

It takes a huge amount of water to raise animals for food, cattle being the worst offenders. Between the water given to the animal directly and the water required to grow food for it, it takes roughly 7,000 litres of water to raise one pound of beef. That means that by eating a portion of beef about the same weight as 3 tomatoes you waste as much water as you would by leaving your shower on for about 15 hours. If you were to eat the 3 tomatoes instead, you would use about 100 litres of water instead of 7,000. Think about that the next time you decide that taking a bath is too wasteful.

Some people say that the effect of animal agriculture on climate change is exaggerated. I say it cannot be exaggerated enough. While animal agriculture accounts for only 11% of emissions directly (methane from animals burping), its effects on the planet go much further than that. One third of all ice-free land on earth is used to raise livestock, and one third of all grain on earth is used to feed them. This greatly reduces the space and resources available to wild animals.

Animal agriculture is a leading cause of deforestation, depriving many wild animals of their homes and access to food. In addition to this disastrous impact on biodiversity, trees are one of the most important carbon sinks on the planet. One acre of forest can accumulate 100 metric tonnes of CO2 over time and we cut down roughly 18 million acres of forests a year. That means that the trees we cut down each year contain between them approximately 1.8 billion metric tons of CO2. To give you perspective, the average emissions per person globally is 5 metric tons per year. In the world’s largest forest, the Amazon, 90% of deforestation is carried out in the name of animal agriculture. In many cases, the forest is cut down and the wood is simply burned just to make room for livestock, releasing all the carbon trapped during the tree’s lifetime back into the atmosphere all at once. By expanding our land use to feed our booming populations, we are depriving the planet of one of its natural defense mechanisms against rising CO2 levels.

It takes about 65 square feet of land to make a quarter-pounder. The average american eats about 62 pounds of beef per year. That works out to almost half an acre of land use per person for beef alone. If you expand that number to include all Americans, over 121,000,000 acres of land are needed for the production of beef each year. That is roughly the size of Spain. In reality, America produces more beef than it consumes. Right now, 654,000,000 acres of america are used for grazing (not just cattle). That is almost the same size as India, a country with 4 times the population. There are only 327 million Americans, but global populations are set reach 10 billion by 2050. If this is not unsustainable then I don’t know what is.

The crux of this problem is that there are only so many resources available to the animals that live here on earth. By redirecting the majority of those resources (like land, water and food) to just a few species (like cattle, chickens and pigs), we completely derail the balance that has existed in the global ecosystem for hundreds of thousands of years. People fail to make the connection between the food we eat and the massive loss of biodiversity which is currently taking place. The truth is that they could not be more linked.

Climate Change is not Binary

When people talk about climate change, the sentiment is often that we need to do something before it is ‘too late’ to ‘stop’ climate change. Unfortunately, that time has already passed. The carbon we have already released will take a long time to have an effect on the climate, and emissions are still rising. There is no way this is going to end perfectly. We have already sealed the fate of countless people by releasing as much CO2 as we have. This, however, is no reason to give up the fight. Many people have become fatalists about climate change, saying that its effects will be terrible now regardless of what we do. So why bother trying? The answer is that climate change is not a ‘yes or no’ question. If anything, it is multiple choice. Our actions now and in the coming years will dictate not ‘whether’ climate change will happen, but rather how badly the effects will be felt by future generations. It is never ‘too late’ to act, because things can always get worse.

I will be taking many of the stats in this section from a terrifying but brilliant book by David Wallace Wells called ‘The Uninhabitable Earth‘. According to Wells, it is estimated that at 2 degrees of warming, “the ice sheets will begin their collapse, 400 million more people will suffer from water scarcity”…”there would be 32 times as many extreme heatwaves in India, and each would last 5 times as long“. This is the fate we have all but guaranteed for the next few generations of people and animals. Things are going to get very, very bad and there is nothing we can do about it. However, the effects of 2 degrees of warming pale in comparison to those of 3 degrees.

According to Wells, at 3 degrees, droughts in Africa are predicted to last 5 years longer than they do now. In the U.S, wildfires would destroy at least 6 times as much land as they do now. The number of people without access to drinking water or food will continue to increase at breakneck speeds. Recent research suggests that if we immediately meet the goals set out in the Paris climate accord, we will still warm the planet by around 3.2 degrees. Currently, no industrial nation is on track to meet those goals. When it will happen is hard to say, but in the next couple of centuries, humans will be faced with the devastating situation I have just described. But even if we have locked in 3 degrees already, things could still get much worse.

Each degree brings with it new levels of unimaginable suffering for both humans and the rest of the animal kingdom. Our job now is to mitigate as best we can how badly climate change will be felt by generations to come. 2 degrees is better than 3 degrees, true. But 3 is better than 4. 4 is better than 5. 5 is better than 6 and so on. The UN predicts that we are due for about 4.5 degrees by the end of the century. Their worst-case scenario (if we carry on doing what we’re doing) is 8 degrees by the end of the century. With that amount of warming, one third of the planet would be uninhabitable due to direct heat alone and two thirds of our major cities would be underwater. Things will get bad, yes, but they don’t have to get that bad.